Skip to main content
Log in

Topology and Geometry of Random 2-Dimensional Hypertrees

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

A hypertree, or \(\mathbb {Q}\)-acyclic complex, is a higher-dimensional analogue of a tree. We study random 2-dimensional hypertrees according to the determinantal measure suggested by Lyons. We are especially interested in their topological and geometric properties. We show that with high probability, a random 2-dimensional hypertree T is aspherical, i.e., that it has a contractible universal cover. We also show that with high probability the fundamental group \(\pi _1(T)\) is hyperbolic and has cohomological dimension 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aigner, M., Ziegler, G.M.: Proofs from THE BOOK. Springer, Berlin (2018)

    Book  Google Scholar 

  2. Aldous, D.: The continuum random tree. I. Ann. Probab. 19(1), 1–28 (1991)

    Article  MathSciNet  Google Scholar 

  3. Aldous, D.: The continuum random tree. II. An overview. In: Stochastic Analysis (Durham 1990). London Math. Soc. Lecture Note Ser., vol. 167, pp. 23–70. Cambridge University Press, Cambridge (1991)

  4. Aldous, D.: The continuum random tree. III. Ann. Probab. 21(1), 248–289 (1993)

    Article  MathSciNet  Google Scholar 

  5. Avron, A., Dershowitz, N.: Cayley’s formula: a page from the Book. Am. Math. Monthly 123(7), 699–700 (2016)

    Article  MathSciNet  Google Scholar 

  6. Babson, E., Hoffman, Ch., Kahle, M.: The fundamental group of random \(2\)-complexes. J. Am. Math. Soc. 24(1), 1–28 (2011)

    Article  MathSciNet  Google Scholar 

  7. Bekka, B., de la Harpe, P., Valette, A.: Kazhdan’s Property (T). New Mathematical Monographs, vol. 11. Cambridge University Press, Cambridge (2008)

  8. Borchardt, C.W.: Ueber eine der Interpolation entsprechende Darstellung der Eliminations-Resultante. J. Reine Angew. Math. 57, 111–121 (1860)

    MathSciNet  Google Scholar 

  9. Brown, K.S.: Cohomology of Groups. Graduate Texts in Mathematics, vol. 87. Springer, New York–Berlin (1982)

  10. Cayley, A.: A theorem on trees. Q. J. Pure Appl. Math. 23, 376–378 (1889)

    MATH  Google Scholar 

  11. Clancy, J., Kaplan, N., Leake, T., Payne, S., Wood, M.M.: On a Cohen–Lenstra heuristic for Jacobians of random graphs. J. Algebraic Combin. 42(3), 701–723 (2015)

    Article  MathSciNet  Google Scholar 

  12. Cohen, H., Lenstra, H.W., Jr.: Heuristics on class groups of number fields. In: Number Theory (Noordwijkerhout 1983). Lecture Notes in Mathematics, vol. 1068, pp. 33–62. Springer, Berlin (1984)

  13. Costa, A.E., Farber, M.: The asphericity of random \(2\)-dimensional complexes. Random Struct. Algor. 46(2), 261–273 (2015)

    Article  MathSciNet  Google Scholar 

  14. Costa, A., Farber, M.: Large random simplicial complexes. I. J. Topol. Anal. 8(3), 399–429 (2016)

    Article  MathSciNet  Google Scholar 

  15. Duval, A.M., Klivans, C.J., Martin, J.L.: Simplicial matrix-tree theorems. Trans. Am. Math. Soc. 361(11), 6073–6114 (2009)

    Article  MathSciNet  Google Scholar 

  16. Ellenberg, J.S., Venkatesh, A., Westerland, C.: Homological stability for Hurwitz spaces and the Cohen–Lenstra conjecture over function fields. Ann. Math. 183(3), 729–786 (2016)

    Article  MathSciNet  Google Scholar 

  17. Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.): Handbook of Discrete and Computational Geometry. Discrete Mathematics and Its Applications (Boca Raton), 3rd edn. CRC Press, Boca Raton (2018)

  18. Gromov, M.: Hyperbolic groups. In: Essays in Group Theory. Math. Sci. Res. Inst. Publ., vol. 8, pp. 75–263. Springer, New York (1987)

  19. Hoffman, Ch., Kahle, M., Paquette, E.: The threshold for integer homology in random \(d\)-complexes. Discrete Comput. Geom. 57(4), 810–823 (2017)

    Article  MathSciNet  Google Scholar 

  20. Hoffman, Ch., Kahle, M., Paquette, E.: Spectral gaps of random graphs and applications. Int. Math. Res. Not. IMRN 2021(11), 8353–8404 (2021)

    Article  MathSciNet  Google Scholar 

  21. Kahle, M., Lutz, F.H., Newman, A., Parsons, K.: Cohen–Lenstra heuristics for torsion in homology of random complexes. Exp. Math. 29(3), 347–359 (2020)

    Article  MathSciNet  Google Scholar 

  22. Kalai, G.: Enumeration of \(\mathbf{Q}\)-acyclic simplicial complexes. Israel J. Math. 45(4), 337–351 (1983)

    Article  MathSciNet  Google Scholar 

  23. Koplewitz, Sh.: Sandpile groups and the coeulerian property for random directed graphs. Adv. Appl. Math. 90, 145–159 (2017)

    Article  MathSciNet  Google Scholar 

  24. Lengler, J.: The global Cohen–Lenstra heuristic. J. Algebra 357, 347–369 (2012)

    Article  MathSciNet  Google Scholar 

  25. Linial, N., Meshulam, R.: Homological connectivity of random \(2\)-complexes. Combinatorica 26(4), 475–487 (2006)

    Article  MathSciNet  Google Scholar 

  26. Linial, N., Peled, Y.: Enumeration and randomized constructions of hypertrees. Random Struct. Algor. 55(3), 677–695 (2019)

    Article  MathSciNet  Google Scholar 

  27. Lubotzky, A.: High dimensional expanders. In: International Congress of Mathematicians (Rio de Janeiro 2018), vol. 1. Plenary Lectures, pp. 705–730. World Sci. Publ., Hackensack (2018)

  28. Lyons, R.: Determinantal probability measures. Publ. Math. Inst. Hautes Études Sci. 98, 167–212 (2003)

    Article  MathSciNet  Google Scholar 

  29. Lyons, R.: Random complexes and \(l^2\)-Betti numbers. J. Topol. Anal. 1(2), 153–175 (2009)

    Article  MathSciNet  Google Scholar 

  30. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 42. Cambridge University Press, New York (2016)

  31. Nguyen, H.H., Wood, M.M.: Random integral matrices: universality of surjectivity and the cokernel. Invent. Math. (2021). https://doi.org/10.1007/s00222-021-01082-w

  32. Papasoglu, P.: An algorithm detecting hyperbolicity. In: Geometric and Computational Perspectives on Infinite Groups (Minneapolis and New Brunswick 1994). DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 25, pp. 193–200. American Mathematical Society, Providence (1996)

  33. Soulé, C.: Perfect forms and the Vandiver conjecture. J. Reine Angew. Math. 517, 209–221 (1999)

    Article  MathSciNet  Google Scholar 

  34. Stallings, J.R.: On torsion-free groups with infinitely many ends. Ann. Math. 88, 312–334 (1968)

    Article  MathSciNet  Google Scholar 

  35. Swan, R.G.: Groups of cohomological dimension one. J. Algebra 12, 585–610 (1969)

    Article  MathSciNet  Google Scholar 

  36. Wood, M.M.: The distribution of sandpile groups of random graphs. J. Am. Math. Soc. 30(4), 915–958 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

M.K. is grateful to Nati Linial for suggesting the study of random hypertrees and for encouragement. We thank TU Berlin for hosting us during the 2019–2020 academic year. We also thank Russell Lyons for helpful comments on an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Kahle.

Additional information

Editor in Charge: János Pach

M.K. was supported in part by NSF-CCF Grants #1740761 and #1839358. He is grateful to the Simons Foundation for a Simons Fellowship, and to the Berlin Mathematical School for a Mercator Fellowship. A.N. was supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Graduiertenkolleg 2434 “Facets of Complexity”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahle, M., Newman, A. Topology and Geometry of Random 2-Dimensional Hypertrees. Discrete Comput Geom 67, 1229–1244 (2022). https://doi.org/10.1007/s00454-021-00352-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-021-00352-x

Keywords

Mathematics Subject Classification

Navigation