Abstract
A hypertree, or \(\mathbb {Q}\)-acyclic complex, is a higher-dimensional analogue of a tree. We study random 2-dimensional hypertrees according to the determinantal measure suggested by Lyons. We are especially interested in their topological and geometric properties. We show that with high probability, a random 2-dimensional hypertree T is aspherical, i.e., that it has a contractible universal cover. We also show that with high probability the fundamental group \(\pi _1(T)\) is hyperbolic and has cohomological dimension 2.
Similar content being viewed by others
References
Aigner, M., Ziegler, G.M.: Proofs from THE BOOK. Springer, Berlin (2018)
Aldous, D.: The continuum random tree. I. Ann. Probab. 19(1), 1–28 (1991)
Aldous, D.: The continuum random tree. II. An overview. In: Stochastic Analysis (Durham 1990). London Math. Soc. Lecture Note Ser., vol. 167, pp. 23–70. Cambridge University Press, Cambridge (1991)
Aldous, D.: The continuum random tree. III. Ann. Probab. 21(1), 248–289 (1993)
Avron, A., Dershowitz, N.: Cayley’s formula: a page from the Book. Am. Math. Monthly 123(7), 699–700 (2016)
Babson, E., Hoffman, Ch., Kahle, M.: The fundamental group of random \(2\)-complexes. J. Am. Math. Soc. 24(1), 1–28 (2011)
Bekka, B., de la Harpe, P., Valette, A.: Kazhdan’s Property (T). New Mathematical Monographs, vol. 11. Cambridge University Press, Cambridge (2008)
Borchardt, C.W.: Ueber eine der Interpolation entsprechende Darstellung der Eliminations-Resultante. J. Reine Angew. Math. 57, 111–121 (1860)
Brown, K.S.: Cohomology of Groups. Graduate Texts in Mathematics, vol. 87. Springer, New York–Berlin (1982)
Cayley, A.: A theorem on trees. Q. J. Pure Appl. Math. 23, 376–378 (1889)
Clancy, J., Kaplan, N., Leake, T., Payne, S., Wood, M.M.: On a Cohen–Lenstra heuristic for Jacobians of random graphs. J. Algebraic Combin. 42(3), 701–723 (2015)
Cohen, H., Lenstra, H.W., Jr.: Heuristics on class groups of number fields. In: Number Theory (Noordwijkerhout 1983). Lecture Notes in Mathematics, vol. 1068, pp. 33–62. Springer, Berlin (1984)
Costa, A.E., Farber, M.: The asphericity of random \(2\)-dimensional complexes. Random Struct. Algor. 46(2), 261–273 (2015)
Costa, A., Farber, M.: Large random simplicial complexes. I. J. Topol. Anal. 8(3), 399–429 (2016)
Duval, A.M., Klivans, C.J., Martin, J.L.: Simplicial matrix-tree theorems. Trans. Am. Math. Soc. 361(11), 6073–6114 (2009)
Ellenberg, J.S., Venkatesh, A., Westerland, C.: Homological stability for Hurwitz spaces and the Cohen–Lenstra conjecture over function fields. Ann. Math. 183(3), 729–786 (2016)
Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.): Handbook of Discrete and Computational Geometry. Discrete Mathematics and Its Applications (Boca Raton), 3rd edn. CRC Press, Boca Raton (2018)
Gromov, M.: Hyperbolic groups. In: Essays in Group Theory. Math. Sci. Res. Inst. Publ., vol. 8, pp. 75–263. Springer, New York (1987)
Hoffman, Ch., Kahle, M., Paquette, E.: The threshold for integer homology in random \(d\)-complexes. Discrete Comput. Geom. 57(4), 810–823 (2017)
Hoffman, Ch., Kahle, M., Paquette, E.: Spectral gaps of random graphs and applications. Int. Math. Res. Not. IMRN 2021(11), 8353–8404 (2021)
Kahle, M., Lutz, F.H., Newman, A., Parsons, K.: Cohen–Lenstra heuristics for torsion in homology of random complexes. Exp. Math. 29(3), 347–359 (2020)
Kalai, G.: Enumeration of \(\mathbf{Q}\)-acyclic simplicial complexes. Israel J. Math. 45(4), 337–351 (1983)
Koplewitz, Sh.: Sandpile groups and the coeulerian property for random directed graphs. Adv. Appl. Math. 90, 145–159 (2017)
Lengler, J.: The global Cohen–Lenstra heuristic. J. Algebra 357, 347–369 (2012)
Linial, N., Meshulam, R.: Homological connectivity of random \(2\)-complexes. Combinatorica 26(4), 475–487 (2006)
Linial, N., Peled, Y.: Enumeration and randomized constructions of hypertrees. Random Struct. Algor. 55(3), 677–695 (2019)
Lubotzky, A.: High dimensional expanders. In: International Congress of Mathematicians (Rio de Janeiro 2018), vol. 1. Plenary Lectures, pp. 705–730. World Sci. Publ., Hackensack (2018)
Lyons, R.: Determinantal probability measures. Publ. Math. Inst. Hautes Études Sci. 98, 167–212 (2003)
Lyons, R.: Random complexes and \(l^2\)-Betti numbers. J. Topol. Anal. 1(2), 153–175 (2009)
Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 42. Cambridge University Press, New York (2016)
Nguyen, H.H., Wood, M.M.: Random integral matrices: universality of surjectivity and the cokernel. Invent. Math. (2021). https://doi.org/10.1007/s00222-021-01082-w
Papasoglu, P.: An algorithm detecting hyperbolicity. In: Geometric and Computational Perspectives on Infinite Groups (Minneapolis and New Brunswick 1994). DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 25, pp. 193–200. American Mathematical Society, Providence (1996)
Soulé, C.: Perfect forms and the Vandiver conjecture. J. Reine Angew. Math. 517, 209–221 (1999)
Stallings, J.R.: On torsion-free groups with infinitely many ends. Ann. Math. 88, 312–334 (1968)
Swan, R.G.: Groups of cohomological dimension one. J. Algebra 12, 585–610 (1969)
Wood, M.M.: The distribution of sandpile groups of random graphs. J. Am. Math. Soc. 30(4), 915–958 (2017)
Acknowledgements
M.K. is grateful to Nati Linial for suggesting the study of random hypertrees and for encouragement. We thank TU Berlin for hosting us during the 2019–2020 academic year. We also thank Russell Lyons for helpful comments on an earlier draft.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor in Charge: János Pach
M.K. was supported in part by NSF-CCF Grants #1740761 and #1839358. He is grateful to the Simons Foundation for a Simons Fellowship, and to the Berlin Mathematical School for a Mercator Fellowship. A.N. was supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Graduiertenkolleg 2434 “Facets of Complexity”
Rights and permissions
About this article
Cite this article
Kahle, M., Newman, A. Topology and Geometry of Random 2-Dimensional Hypertrees. Discrete Comput Geom 67, 1229–1244 (2022). https://doi.org/10.1007/s00454-021-00352-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-021-00352-x