Skip to main content

Toric Codes from Order Polytopes


We investigate a class of linear error correcting codes in relation with the order polytopes. In particular we consider the order polytopes of tree posets and bipartite posets. We calculate the parameters of the associated toric variety codes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence (2011)

    Google Scholar 

  2. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 51, 161–166 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  3. Geissinger, L.: The face structure of a poset polytope. In: 3rd Caribbean Conference on Combinatorics and Computing (Bridgetown 1981), pp. 125–133. University West Indies, Cave Hill Campus, Barbados (1981)

  4. Hansen, J.P.: Toric varieties Hirzebruch surfaces and error-correcting codes. Appl. Algebra Eng. Commun. Comput. 13(4), 289–300 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hansen, S.H.: Error-correcting codes from higher-dimensional varieties. Finite Fields Appl. 7(4), 531–552 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hibi, T.: Distributive lattices, affine semigroup rings and algebras with straightening laws. In: Commutative Algebra and Combinatorics (Kyoto 1985). Advance Studies in Pure Mathematics, vol. 11, pp. 93–109. North-Holland, Amsterdam (1987)

  7. Hibi, T., Higashitani, A.: Smooth Fano polytopes arising from finite partially ordered sets. Discrete Comput. Geom. 45(3), 449–461 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hibi, T., Li, N., Sahara, Y., Shikama, A.: The numbers of edges of the order polytope and the chain polytope of a finite partially ordered set. Discrete Math. 340(5), 991–994 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Little, J., Schenck, H.: Toric surface codes and Minkowski sums. SIAM J. Discrete Math. 20(4), 999–1014 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Little, J., Schwarz, R.: On toric codes and multivariate Vandermonde matrices. Appl. Algebra Eng. Commun. Comput. 18(4), 349–367 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ruano, D.: On the parameters of \(r\)-dimensional toric codes. Finite Fields Appl. 13(4), 962–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Soprunov, I., Soprunova, J.: Bringing toric codes to the next dimension. SIAM J. Discrete Math. 24(2), 655–665 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Stanley, R.P.: Two poset polytopes. Discrete Comput. Geom. 1(1), 9–23 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tsfasman, M., Vlăduţ, S., Nogin, D.: Algebraic Geometric Codes: Basic Notions. Mathematical Surveys and Monographs, vol. 139. American Mathematical Society, Providence (2007)

    Book  MATH  Google Scholar 

Download references


We thank Roy Joshua and G.V. Ravindra for many useful discussions on the topics of this paper. We thank the referee for the constructive comments and for the very careful reading of our paper. Finally, we gratefully acknowledge the research of the first author was partially supported by a grant from the Louisiana Board of Regents.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mahir Bilen Can.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Can, M.B., Hibi, T. Toric Codes from Order Polytopes. Discrete Comput Geom 69, 834–848 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Toric code
  • Parameter
  • Poset polytope
  • Order polytope
  • Shrub
  • Bipartite poset

Mathematics Subject Classification

  • 11T71
  • 06A07