Skip to main content
Log in

Packing Disks by Flipping and Flowing

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We provide a new type of proof for the Koebe–Andreev–Thurston (KAT) planar circle packing theorem based on combinatorial edge-flips. In particular, we show that starting from a disk packing with a maximal planar contact graph G, one can remove any flippable edge \(e^-\) of this graph and then continuously flow the disks in the plane, so that at the end of the flow, one obtains a new disk packing whose contact graph is the graph resulting from flipping the edge \(e^-\) in G. This flow is parameterized by a single inversive distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alexandrov, A.D.: Convex Polyhedra. Springer Monographs in Mathematics. Springer, Berlin (2005)

    Google Scholar 

  2. Andreev, E.M.: On convex polyhedra of finite volume in Lobachevskii space. Math. USSR-Sbornik 12(2), 255–259 (1970)

    Article  Google Scholar 

  3. Bobenko, A.I., Springborn, B.A.: Variational principles for circle patterns and Koebe’s theorem. Trans. Am. Math. Soc. 356(2), 659–689 (2004)

    Article  MathSciNet  Google Scholar 

  4. Bose, P., Hurtado, F.: Flips in planar graphs. Comput. Geom. 42(1), 60–80 (2009)

    Article  MathSciNet  Google Scholar 

  5. Bowers, J.C., Bowers, P.L.: Ma–Schlenker \(c\)-octahedra in the \(2\)-sphere. Discrete Comput. Geom. 60(1), 9–26 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bowers, J.C., Bowers, P.L., Pratt, K.: Almost all circle polyhedra are rigid. Geom. Dedicata 203, 337–346 (2019)

    Article  MathSciNet  Google Scholar 

  7. Bowers, P., Stephenson, K.: A branched Andreev–Thurston theorem for circle packings of the sphere. Proc. Lond. Math. Soc. 73(1), 185–215 (1996)

    Article  MathSciNet  Google Scholar 

  8. Chow, B., Luo, F.: Combinatorial Ricci flows on surfaces. J. Differ. Geom. 63(1), 97–129 (2003)

    Article  MathSciNet  Google Scholar 

  9. Colin de Verdière, Y.: Un principe variationnel pour les empilements de cercles. Invent. Math. 104, 655–669 (1991)

    Article  MathSciNet  Google Scholar 

  10. Collins, Ch.R., Stephenson, K.: A circle packing algorithm. Comput. Geom. 25(3), 233–256 (2003)

  11. Connelly, R.: Rigidity and energy. Invent. Math. 66(1), 11–33 (1982)

    Article  MathSciNet  Google Scholar 

  12. Connelly, R.: What is \(\ldots \) a tensegrity? Not. Am. Math. Soc. 60(1), 78–80 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Connelly, R., Gortler, S.J., Theran, L.: Rigidity for sticky discs. Proc. R. Soc. A 475(2222), # 20180773 (2019)

  14. Fejes Tóth, L.: Regular Figures. A Pergamon Press Book, Macmillan, New York (1964)

    MATH  Google Scholar 

  15. Gluck, H.: Almost all simply connected closed surfaces are rigid. In: Geometric Topology (Park City 1974). Lecture Notes in Math., vol. 438, pp. 225–239. Springer, Berlin (1975)

  16. Guo, R.: Local rigidity of inversive distance circle packing. Trans. Am. Math. Soc. 363(9), 4757–4776 (2011)

    Article  MathSciNet  Google Scholar 

  17. He, Z., Liu, J.: On the Teichmüller theory of circle patterns. Trans. Am. Math. Soc. 365(12), 6517–6541 (2013)

    Article  Google Scholar 

  18. Izmestiev, I.: Projective background of the infinitesimal rigidity of frameworks. Geom. Dedicata 140, 183–203 (2009)

    Article  MathSciNet  Google Scholar 

  19. Koebe, P.: Kontaktprobleme der konformen Abbildung. Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Kl. 88, 141–164 (1936)

    MATH  Google Scholar 

  20. Lam, W.Y.: Minimal surfaces from infinitesimal deformations of circle packings. Adv. Math. 362, # 106939 (2020)

  21. Laumond, J.-P.: Connectivity of plane triangulations. Inform. Process. Lett. 34(2), 87–96 (1990)

    Article  MathSciNet  Google Scholar 

  22. Luo, F.: Rigidity of polyhedral surfaces, III. Geom. Topol. 15(4), 2299–2319 (2011)

    Article  MathSciNet  Google Scholar 

  23. Ma, J., Schlenker, J.-M.: Non-rigidity of spherical inversive distance circle packings. Discrete Comput. Geom. 47(3), 610–617 (2012)

    Article  MathSciNet  Google Scholar 

  24. Marden, A., Rodin, B.: On Thurston’s formulation and proof of Andreev’s theorem. In: Computational Methods and Function Theory (Valparaíso 1989). Lecture Notes in Math., vol. 1435, pp. 103–115. Springer, Berlin (1990)

  25. Mohar, B.: A polynomial time circle packing algorithm. Discrete Math. 117(1–3), 257–263 (1993)

    Article  MathSciNet  Google Scholar 

  26. Rivin, I.: Euclidean structures on simplicial surfaces and hyperbolic volume. Ann. Math. 139(3), 553–580 (1994)

    Article  MathSciNet  Google Scholar 

  27. Rodin, B., Sullivan, D.: The convergence of circle packings to the Riemann mapping. J. Differ. Geom. 26(2), 349–360 (1987)

    Article  MathSciNet  Google Scholar 

  28. Roeder, R.K.W., Hubbard, J.H., Dunbar, W.D.: Andreev’s theorem on hyperbolic polyhedra. Ann. Inst. Fourier (Grenoble) 57(3), 825–882 (2007)

    Article  MathSciNet  Google Scholar 

  29. Schaeffer, D.G., Cain, J.W.: Ordinary Differential Equations: Basics and Beyond. Texts in Applied Mathematics, vol. 65. Springer, New York (2016)

  30. Schramm, O.: Existence and uniqueness of packings with specified combinatorics. Israel J. Math. 73(3), 321–341 (1991)

    Article  MathSciNet  Google Scholar 

  31. Sleator, D.D., Tarjan, R.E., Thurston, W.P.: Short encodings of evolving structures. SIAM J. Discrete Math. 5(3), 428–450 (1992)

    Article  MathSciNet  Google Scholar 

  32. Stephenson, K.: Introduction to Circle Packing. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  33. Thurston, W.P.: The Geometry and Topology of Three-Manifolds. Princeton University, Princeton (1980). (unpublished notes)

  34. Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen Mathematiker-Vereinigung 46, 26–32 (1936)

    MATH  Google Scholar 

  35. Xu, X.: Rigidity of inversive distance circle packings revisited. Adv. Math. 332, 476–509 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Louis Theran for many helpful discussions along the way.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Gortler.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

R. Connelly: Partially supported by NSF Grant DMS-1564493. S. J. Gortler: Partially supported by NSF Grant DMS-1564473.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Connelly, R., Gortler, S.J. Packing Disks by Flipping and Flowing. Discrete Comput Geom 66, 1262–1285 (2021). https://doi.org/10.1007/s00454-020-00242-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-020-00242-8

Keywords

Mathematics Subject Classification

Navigation