Skip to main content
Log in

On the Number of Perfect Triangles with a Fixed Angle

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Richard Guy asked the following question: can we find a triangle with rational sides, medians and area? Such a triangle is called a perfect triangle and no example has been found to date. It is widely believed that such a triangle does not exist. Here we use the setup of Solymosi and de Zeeuw about rational distance sets contained in an algebraic curve, to show that for any angle \(0<\theta < \pi \), the number of perfect triangles with an angle \(\theta \) is finite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In general the conic \(ax^2+bxy+cy^2+dx+ey+f=0\) is an ellipse if \(b^2-4ac <0\). In our situation \(b=2\lambda =2\cos \theta \), where \(0<\theta <\pi \) and \(\theta \ne {\pi }/{2}\) and \(d=e=0\).

  2. https://math.stackexchange.com/questions/1479139/fiber-products-of-curves.

References

  1. Anning, N.H., Erdös, P.: Integral distances. Bull. Am. Math. Soc. 51, 598–600 (1945)

    Article  MathSciNet  Google Scholar 

  2. Ascher, K., Braune, L., Turchet, A.: The Erdős–Ulam problem, Lang’s conjecture, and uniformity (2019). arXiv:1901.02616

  3. Buchholz, R.H.: Triangles with three rational medians. J. Number Theory 97(1), 113–131 (2002)

    Article  MathSciNet  Google Scholar 

  4. Buchholz, R.H., Rathbun, R.L.: An infinite set of Heron triangles with two rational medians. Am. Math. Mon. 104(2), 107–115 (1997)

    Article  MathSciNet  Google Scholar 

  5. Faltings, G.: Erratum: “Endlichkeitssätze für abelsche Varietäten über Zahlkörpern”. Invent. Math. 75(2), 381 (1984)

    Article  MathSciNet  Google Scholar 

  6. Guy, R.K.: Unsolved Problems in Number Theory. Problem Books in Mathematics. Springer, New York (2004)

    Book  Google Scholar 

  7. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    Book  Google Scholar 

  8. Hegedüs, G., Li, Z., Schicho, J., Schröcker, H.-P.: The theory of bonds II: closed 6R linkages with maximal genus. J. Symb. Comput. 68(2), 167–180 (2015)

    Article  MathSciNet  Google Scholar 

  9. Ismail, S.: Perfect Triangles: Rational Points on Elliptic Curves. PhD thesis, University of Queensland (2017). https://espace.library.uq.edu.au/view/UQ:677767

  10. Luca, F.: Perfect cuboids and perfect square triangles. Math. Mag. 73(5), 400–401 (2000)

    Article  MathSciNet  Google Scholar 

  11. van Luijk, R.: On Perfect Cuboids. PhD thesis, Universiteit Utrecht (2000). https://www.math.leidenuniv.nl/~rvl/ps/cuboids.pdf

  12. Makhul, M., Shaffaf, J.: On uniform boundedness of a rational distance set in the plane. C. R. Math. Acad. Sci. Paris 350(3–4), 121–124 (2012)

    Article  MathSciNet  Google Scholar 

  13. Pasten, H.: Definability of Frobenius orbits and a result on rational distance sets. Monatsh. Math. 182(1), 99–126 (2017)

    Article  MathSciNet  Google Scholar 

  14. Shafarevich, I.R.: Basic Algebraic Geometry. 1. Springer, Heidelberg (2013)

    Book  Google Scholar 

  15. Shaffaf, J.: A solution of the Erdős–Ulam problem on rational distance sets assuming the Bombieri–Lang conjecture. Discrete Comput. Geom. 60(2), 283–293 (2018)

    Article  MathSciNet  Google Scholar 

  16. Sierpiński, W.: Elementary Theory of Numbers. North-Holland Mathematical Library, vol. 31. North-Holland, Amsterdam (1988)

    Google Scholar 

  17. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 106. Springer, New York (1986)

    Book  Google Scholar 

  18. Solymosi, J., de Zeeuw, F.: On a question of Erdős and Ulam. Discrete Comput. Geom. 43(2), 393–401 (2010)

    Article  MathSciNet  Google Scholar 

  19. Tao, T.: The Erdős–Ulam problem, varieties of general type, and the Bombieri–Lang conjecture (2014). https://terrytao.wordpress.com/2014/12/20/the-erdos-ulam-problem-varieties-of-general-type-and-the-bombieri-lang-conjecture

  20. Zelator, K.: The seventeen elements of Pythagorean triangles (2008). arXiv:0809.0902

  21. The Stacks Project (2018). https://stacks.math.columbia.edu

Download references

Acknowledgements

The author was supported by the Austrian Science Fund (FWF): Project P 30405-N32. I am grateful to Matteo Gallet, Niels Lubbes, Oliver Roche-Newton, Josef Schicho, and Audie Warren for several helpful conversations and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Makhul.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhul, M. On the Number of Perfect Triangles with a Fixed Angle. Discrete Comput Geom 66, 1143–1149 (2021). https://doi.org/10.1007/s00454-020-00227-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-020-00227-7

Keywords

Mathematics Subject Classification

Navigation