Skip to main content
Log in

Separation by Convex Pseudo-Circles

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Let S be a finite set of n points in the plane in general position. We prove that every inclusion-maximal family of subsets of S separable by convex pseudo-circles has the same cardinal \(\left( {\begin{array}{c}n\\ 0\end{array}}\right) +\left( {\begin{array}{c}n\\ 1\end{array}}\right) +\left( {\begin{array}{c}n\\ 2\end{array}}\right) +\left( {\begin{array}{c}n\\ 3\end{array}}\right) \). This number does not depend on the configuration of S and is the same as the number of subsets of S separable by true circles. For a fixed \(k \in \{1,\dots ,n-1\}\), we also count the number of elements in a maximal family of k-subsets of S separable by convex pseudo-circles. This time the number depends on the configuration of S, but it is again equal to the number of k-subsets of S separable by true circles. Thus, it is an invariant of S: it does not depend on the choice of the maximal family. To achieve these results, we introduce a graph that generalizes the dual graph of the order-k Voronoi diagram. The vertices of the graph are the elements of a maximal family of k-subsets of S separable by convex pseudo-circles. In order to count the number of these vertices, we show that the graph is realizable as a triangulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://sarielhp.org/blog/?p=1951.

References

  1. Andrzejak, A., Fukuda, K.: Optimization over \(k\)-set polytopes and efficient \(k\)-set enumeration. Algorithms and Data Structures (Vancouver 1999). Lecture Notes in Computer Science, vol. 1663, pp. 1–12. Springer, Berlin (1999)

    Chapter  Google Scholar 

  2. Andrzejak, A., Welzl, E.: In between \(k\)-sets, \(j\)-facets, and \(i\)-faces: \((i, j)\)-partitions. Discret. Comput. Geom. 29(1), 105–131 (2003)

    Article  MathSciNet  Google Scholar 

  3. Aurenhammer, F., Klein, R., Lee, D.-T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific, Hackensack (2013)

    Book  Google Scholar 

  4. Aurenhammer, F., Schwarzkopf, O.: A simple on-line randomized incremental algorithm for computing higher order Voronoi diagrams. Int. J. Comput. Geom. Appl. 2(4), 363–381 (1992)

    Article  MathSciNet  Google Scholar 

  5. Axenovich, M., Ueckerdt, T.: Density of range capturing hypergraphs. J. Comput. Geom. 7(1), 1–21 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Buzaglo, S., Holzman, R., Pinchasi, R.: On \(s\)-intersecting curves and related problems. In: Proceedings of ACM Symposium on Computational Geometry (SCG’08), pp. 79–84. ACM, New York (2008)

  7. Buzaglo, S., Pinchasi, R., Rote G.: Topological hypergraphs. In: Thirty Essays on Geometric Graph Theory, pp. 71–81. Springer, New York (2013)

  8. Chevallier, N., Fruchard, A., Schmitt, D., Spehner, J.-C.: Separation by convex pseudo-circles. In: Proceedings of the 30th Annual Symposium on Computational Geometry (SoCG’14), pp. 444–453, ACM, New York (2014)

  9. Chevallier, N., Fruchard, A., Schmitt, D., Spehner, J.-C.: Separation by convex pseudo-circles (2015). https://hal.archives-ouvertes.fr/hal-01108235

  10. Dey, T.K.: Improved bounds for planar \(k\)-sets and related problems. Discret. Comput. Geom. 19(3), 373–382 (1998)

    Article  MathSciNet  Google Scholar 

  11. Edelsbrunner, H., Nikitenko, A.: Poisson–Delaunay mosaics of order \(k\). Discret. Comput. Geom. 62(4), 865–878 (2019)

    Article  MathSciNet  Google Scholar 

  12. Edelsbrunner, H., Valtr, P., Welzl, E.: Cutting dense point sets in half. Discret. Comput. Geom. 17(3), 243–255 (1997)

    Article  MathSciNet  Google Scholar 

  13. El Oraiby, W., Schmitt, D., Spehner, J.-C.: Centroid triangulations from \(k\)-sets. Int. J. Comput. Geom. Appl. 21(6), 635–659 (2011)

    Article  MathSciNet  Google Scholar 

  14. Lawson, C.L.: Properties of \(n\)-dimensional triangulations. Comput. Aided Geom. Des. 3(4), 231–246 (1986)

    Article  MathSciNet  Google Scholar 

  15. Lee, D.-T.: On \(k\)-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput. C–31(6), 478–487 (1982)

    MathSciNet  MATH  Google Scholar 

  16. Liu, Y., Snoeyink, J.: Quadratic and cubic B-splines by generalizing higher-order Voronoi diagrams. In: Proceedings of ACM Symposium on Computational Geometry (SCG’07), pp. 150–157. ACM, New York (2007)

  17. Neamtu, M.: Delaunay configurations and multivariate splines: A generalization of a result of B. N. Delaunay. Trans. Am. Math. Soc. 359(7), 2993–3004 (2007)

    Article  MathSciNet  Google Scholar 

  18. Pinchasi, R., Rote, G.: On the maximum size of an anti-chain of linearly separable sets and convex pseudo-discs. Israel J. Math. 172, 337–348 (2009)

    Article  MathSciNet  Google Scholar 

  19. Sauer, N.: On the density of families of sets. J. Comb. Theory Ser. A 13(1), 145–147 (1972)

    Article  MathSciNet  Google Scholar 

  20. Schmitt, D.: Bivariate B-splines from convex pseudo-circle configurations. In: Fundamentals of Computation Theory. Lecture Notes in Computer Science, vol. 11651, pp. 335–349. Springer, Cham (2019)

  21. Schmitt, D., Spehner, J.-C.: On Delaunay and Voronoi diagrams of order \(k\) in the plane. In: Proceedings of the 3rd Canadian Conference on Computational Geometry (1991), pp. 29–32

  22. Shelah, S.: A combinatorial problem; stability and order for models and theories in infinitary languages. Pac. J. Math. 41(1), 247–261 (1972)

    Article  MathSciNet  Google Scholar 

  23. Steiner, J.: Einige Gesetze über die Theilung der Ebene und des Raumes. J. Reine Angew. Math. 1, 349–364 (1826)

    MathSciNet  Google Scholar 

  24. Tóth, G.: Point sets with many \(k\)-sets. Discret. Comput. Geom. 26(2), 187–194 (2001)

    Article  MathSciNet  Google Scholar 

  25. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16(2), 264–280 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Schmitt.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chevallier, N., Fruchard, A., Schmitt, D. et al. Separation by Convex Pseudo-Circles. Discrete Comput Geom 65, 1199–1231 (2021). https://doi.org/10.1007/s00454-020-00190-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-020-00190-3

Keywords

Navigation