Abstract
We initiate the study of no-dimensional versions of classical theorems in convexity. One example is Carathéodory’s theorem without dimension: given an n-element set P in a Euclidean space, a point \(a \in {{\,\mathrm{{\texttt {conv}}}\,}}P\), and an integer \(r \le n\), there is a subset \(Q\subset P\) of r elements such that the distance between a and \({{\,\mathrm{{\texttt {conv}}}\,}}Q\) is less than \({{\,\mathrm{{\texttt {diam}}}\,}}P/\sqrt{2r}\). In an analoguos no-dimension Helly theorem a finite family \(\mathcal {F}\) of convex bodies is given, all of them are contained in the Euclidean unit ball of \(\mathbb {R}^d\). If \(k\le d\), \(|\mathcal {F}|\ge k\), and every k-element subfamily of \(\mathcal {F}\) is intersecting, then there is a point \(q \in \mathbb {R}^d\) which is closer than \(1/\sqrt{k}\) to every set in \(\mathcal {F}\). This result has several colourful and fractional consequences. Similar versions of Tverberg’s theorem and some of their extensions are also established.
Similar content being viewed by others
References
Alon, N., Bárány, I., Füredi, Z., Kleitman, D.J.: Point selections and weak \(\epsilon \)-nets for convex hulls. Comb. Probab. Comput. 1(3), 189–200 (1992)
Alon, N., Kleitman, D.J.: Piercing convex sets and the Hadwiger-Debrunner \((p, q)\)-problem. Adv. Math. 96(1), 103–112 (1992)
Alon, N., Lee, T., Shraibman, A., Vempala, S.: The approximate rank of a matrix and its algorithmic applications: approximate rank. In: 45th Symposium on the Theory of Computing (STOC), pp. 675–684. ACM, New York (2013)
Arocha, J.L., Bárány, I., Bracho, J., Fabila, R., Montejano, L.: Very colorful theorems. Discrete Comput. Geom. 42(2), 142–154 (2009)
Bárány, I.: A generalization of Charathéodory’s theorem. Discrete Math. 40, 141–152 (1982)
Bárány, I., Fodor, F., Montejano, L., Oliveros, D., Pór, A.: Colourful and fractional \((p, q)\)-theorems. Discrete Comput. Geom. 51(3), 628–642 (2014)
Bárány, I., Füredi, Z.: Computing the volume is difficult. Discrete Comput. Geom. 2(4), 319–326 (1987)
Barman, S.: Approximating Nash equilibria and dense bipartite subgraphs via an approximate version of Carathéodory’s theorem. In: 47th Symposium on the Theory of Computing (STOC), pp. 361–369. ACM, New York (2015)
Behrends, E.: On Bárány’s theorems of Carathéodory and Helly type. Stud. Math. 141(3), 235–250 (2000)
Blagojević, P.V.M., Matschke, B., Ziegler, G.M.: Optimal bounds for the colored Tverberg problem. J. Eur. Math. Soc. (JEMS) 17(4), 739–754 (2015)
Blum, A., Har-Peled, S., Raichel, B.: Sparse approximation via generating point sets. In: 27th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 548–557. ACM, New York (2016)
Carathéodory, C.: Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. Math. Ann. 64(1), 95–115 (1907)
Carl, B.: Inequalities of Bernstein–Jackson-type and the degree of compactness of operators in Banach spaces. Ann. Inst. Fourier 35(3), 79–118 (1985)
Carl, B., Pajor, A.: Gel’fand numbers of operators with values in a Hilbert space. Invent. Math. 94(3), 479–504 (1988)
Cassels, J.W.S.: Measures of the non-convexity of sets and the Shapley–Folkman–Starr theorem. Math. Proc. Camb. Philos. Soc. 78(3), 433–436 (1975)
Clarkson, K.L.: Coresets, sparse greedy approximation, and the Frank–Wolfe algorithm. ACM Trans. Algorithms 6(4), # 63 (2010)
Fradelizi, M., Madiman, M., Marsiglietti, A., Zvavitch, A.: The convexification effect of Minkowski summation. EMS Surv. Math. Sci. 5(1–2), 1–64 (2018)
Frank, M.: Wolfe, Ph.: An algorithm for quadratic programming. Nav. Res. Logist. Quart. 3, 95–110 (1956)
Giannopoulos, A.A., Milman, V.: Concentration property on probability spaces. Adv. Math. 156(1), 77–106 (2000)
Guédon, O.: Concentration phenomena in high dimensional geometry. In: Journées MAS 2012. ESAIM Proc., vol. 44, pp. 47–60. EDP Sci., Les Ulis (2014)
Hadwiger, H., Debrunner, H.: Über eine Variante zum Hellyschen Satz. Arch. Math. 8, 309–313 (1957)
Holmsen, A., Pach, J., Tverberg, H.: Points surrounding the origin. Combinatorica 28(6), 633–644 (2008)
Jung, H.W.: Über die kleinste Kugel, die eine räumliche Figur einschliesst. J. Reine Angew. Math. 123, 241–257 (1901)
Kalai, G.: Intersection patterns of convex sets. Isr. J. Math. 48(2–3), 161–174 (1984)
Katchalski, M., Liu, A.: A problem of geomtrey in \(\mathbf{R}^n\). Proc. AMS 75(2), 284–288 (1979)
Kim, M.: A note on the colorful fractional Helly theorem. Discrete Math. 340(1), 3167–3170 (2017)
Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer, New York (2002)
Pisier, G.: Remarques sur un résultat non publié de B. Maurey. Séminaire Analyse Fonctionnelle 1980–1981, #5. Ecole Polytech., Palaiseau (1981)
Rado, R.: A theorem on general measure. J. Lond. Math. Soc. 21, 291–300 (1946)
Starr, R.M.: Quasi-equilibria in markets with non-convex preferences. Econometrica 37, 25–38 (1969)
Starr, R.M.: Approximation of points of convex hull of a sum of sets by points of the sum: an elementary approach. J. Econ. Theory 25(2), 314–317 (1981)
Tverberg, H.: A generalization of Radon’s theorem. J. Lond. Math. Soc. 41, 123–128 (1966)
Živaljević, R.T., Vrećica, S.T.: The colored Tverberg’s problem and complexes of injective functions. J. Comb. Theory Ser. A 61(2), 309–318 (1992)
Acknowledgements
K.A. was supported by ERC StG 716424-CASe and ISF Grant 1050/16. I.B. was supported by the Hungarian National Research, Development and Innovation Office NKFIH Grants K 111827 and K 116769, and by ERC-AdG 321104. N.M. was supported by the grant ANR SAGA (JCJC-14-CE25-0016-01). T.T. was supported by the Hungarian National Research, Development and Innovation Office NKFIH Grants NK 112735 and K 120697.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor in Charge: Kenneth Clarkson
Dedicated to the memory of Branko Grünbaum.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Adiprasito, K., Bárány, I., Mustafa, N.H. et al. Theorems of Carathéodory, Helly, and Tverberg Without Dimension. Discrete Comput Geom 64, 233–258 (2020). https://doi.org/10.1007/s00454-020-00172-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-020-00172-5