Skip to main content
Log in

Theorems of Carathéodory, Helly, and Tverberg Without Dimension

  • Branko Grünbaum Memorial Issue
  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We initiate the study of no-dimensional versions of classical theorems in convexity. One example is Carathéodory’s theorem without dimension: given an n-element set P in a Euclidean space, a point \(a \in {{\,\mathrm{{\texttt {conv}}}\,}}P\), and an integer \(r \le n\), there is a subset \(Q\subset P\) of r elements such that the distance between a and \({{\,\mathrm{{\texttt {conv}}}\,}}Q\) is less than \({{\,\mathrm{{\texttt {diam}}}\,}}P/\sqrt{2r}\). In an analoguos no-dimension Helly theorem a finite family \(\mathcal {F}\) of convex bodies is given, all of them are contained in the Euclidean unit ball of \(\mathbb {R}^d\). If \(k\le d\), \(|\mathcal {F}|\ge k\), and every k-element subfamily of \(\mathcal {F}\) is intersecting, then there is a point \(q \in \mathbb {R}^d\) which is closer than \(1/\sqrt{k}\) to every set in \(\mathcal {F}\). This result has several colourful and fractional consequences. Similar versions of Tverberg’s theorem and some of their extensions are also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alon, N., Bárány, I., Füredi, Z., Kleitman, D.J.: Point selections and weak \(\epsilon \)-nets for convex hulls. Comb. Probab. Comput. 1(3), 189–200 (1992)

    MathSciNet  MATH  Google Scholar 

  2. Alon, N., Kleitman, D.J.: Piercing convex sets and the Hadwiger-Debrunner \((p, q)\)-problem. Adv. Math. 96(1), 103–112 (1992)

    MathSciNet  MATH  Google Scholar 

  3. Alon, N., Lee, T., Shraibman, A., Vempala, S.: The approximate rank of a matrix and its algorithmic applications: approximate rank. In: 45th Symposium on the Theory of Computing (STOC), pp. 675–684. ACM, New York (2013)

  4. Arocha, J.L., Bárány, I., Bracho, J., Fabila, R., Montejano, L.: Very colorful theorems. Discrete Comput. Geom. 42(2), 142–154 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bárány, I.: A generalization of Charathéodory’s theorem. Discrete Math. 40, 141–152 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bárány, I., Fodor, F., Montejano, L., Oliveros, D., Pór, A.: Colourful and fractional \((p, q)\)-theorems. Discrete Comput. Geom. 51(3), 628–642 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Bárány, I., Füredi, Z.: Computing the volume is difficult. Discrete Comput. Geom. 2(4), 319–326 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barman, S.: Approximating Nash equilibria and dense bipartite subgraphs via an approximate version of Carathéodory’s theorem. In: 47th Symposium on the Theory of Computing (STOC), pp. 361–369. ACM, New York (2015)

  9. Behrends, E.: On Bárány’s theorems of Carathéodory and Helly type. Stud. Math. 141(3), 235–250 (2000)

    Article  MATH  Google Scholar 

  10. Blagojević, P.V.M., Matschke, B., Ziegler, G.M.: Optimal bounds for the colored Tverberg problem. J. Eur. Math. Soc. (JEMS) 17(4), 739–754 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Blum, A., Har-Peled, S., Raichel, B.: Sparse approximation via generating point sets. In: 27th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 548–557. ACM, New York (2016)

  12. Carathéodory, C.: Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. Math. Ann. 64(1), 95–115 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carl, B.: Inequalities of Bernstein–Jackson-type and the degree of compactness of operators in Banach spaces. Ann. Inst. Fourier 35(3), 79–118 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carl, B., Pajor, A.: Gel’fand numbers of operators with values in a Hilbert space. Invent. Math. 94(3), 479–504 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cassels, J.W.S.: Measures of the non-convexity of sets and the Shapley–Folkman–Starr theorem. Math. Proc. Camb. Philos. Soc. 78(3), 433–436 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Clarkson, K.L.: Coresets, sparse greedy approximation, and the Frank–Wolfe algorithm. ACM Trans. Algorithms 6(4), # 63 (2010)

  17. Fradelizi, M., Madiman, M., Marsiglietti, A., Zvavitch, A.: The convexification effect of Minkowski summation. EMS Surv. Math. Sci. 5(1–2), 1–64 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frank, M.: Wolfe, Ph.: An algorithm for quadratic programming. Nav. Res. Logist. Quart. 3, 95–110 (1956)

  19. Giannopoulos, A.A., Milman, V.: Concentration property on probability spaces. Adv. Math. 156(1), 77–106 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guédon, O.: Concentration phenomena in high dimensional geometry. In: Journées MAS 2012. ESAIM Proc., vol. 44, pp. 47–60. EDP Sci., Les Ulis (2014)

  21. Hadwiger, H., Debrunner, H.: Über eine Variante zum Hellyschen Satz. Arch. Math. 8, 309–313 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  22. Holmsen, A., Pach, J., Tverberg, H.: Points surrounding the origin. Combinatorica 28(6), 633–644 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jung, H.W.: Über die kleinste Kugel, die eine räumliche Figur einschliesst. J. Reine Angew. Math. 123, 241–257 (1901)

    MathSciNet  MATH  Google Scholar 

  24. Kalai, G.: Intersection patterns of convex sets. Isr. J. Math. 48(2–3), 161–174 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  25. Katchalski, M., Liu, A.: A problem of geomtrey in \(\mathbf{R}^n\). Proc. AMS 75(2), 284–288 (1979)

    Google Scholar 

  26. Kim, M.: A note on the colorful fractional Helly theorem. Discrete Math. 340(1), 3167–3170 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer, New York (2002)

  28. Pisier, G.: Remarques sur un résultat non publié de B. Maurey. Séminaire Analyse Fonctionnelle 1980–1981, #5. Ecole Polytech., Palaiseau (1981)

  29. Rado, R.: A theorem on general measure. J. Lond. Math. Soc. 21, 291–300 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  30. Starr, R.M.: Quasi-equilibria in markets with non-convex preferences. Econometrica 37, 25–38 (1969)

    Article  MATH  Google Scholar 

  31. Starr, R.M.: Approximation of points of convex hull of a sum of sets by points of the sum: an elementary approach. J. Econ. Theory 25(2), 314–317 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tverberg, H.: A generalization of Radon’s theorem. J. Lond. Math. Soc. 41, 123–128 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  33. Živaljević, R.T., Vrećica, S.T.: The colored Tverberg’s problem and complexes of injective functions. J. Comb. Theory Ser. A 61(2), 309–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

K.A. was supported by ERC StG 716424-CASe and ISF Grant 1050/16. I.B. was supported by the Hungarian National Research, Development and Innovation Office NKFIH Grants K 111827 and K 116769, and by ERC-AdG 321104. N.M. was supported by the grant ANR SAGA (JCJC-14-CE25-0016-01). T.T. was supported by the Hungarian National Research, Development and Innovation Office NKFIH Grants NK 112735 and K 120697.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Adiprasito.

Additional information

Editor in Charge: Kenneth Clarkson

Dedicated to the memory of Branko Grünbaum.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adiprasito, K., Bárány, I., Mustafa, N.H. et al. Theorems of Carathéodory, Helly, and Tverberg Without Dimension. Discrete Comput Geom 64, 233–258 (2020). https://doi.org/10.1007/s00454-020-00172-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-020-00172-5

Keywords

Navigation