Skip to main content

Polytopal Bier Spheres and Kantorovich–Rubinstein Polytopes of Weighted Cycles

Abstract

The problem of deciding if a given triangulation of a sphere can be realized as the boundary sphere of a simplicial, convex polytope is known as the ‘Simplicial Steinitz problem’. It is known by an indirect and non-constructive argument that a vast majority of Bier spheres are non-polytopal. Contrary to that, we demonstrate that the Bier spheres associated to threshold simplicial complexes are all polytopal. Moreover, we show that all Bier spheres are starshaped. We also establish a connection between Bier spheres and Kantorovich–Rubinstein polytopes by showing that the boundary sphere of the KR-polytope associated to a polygonal linkage (weighted cycle) is isomorphic to the Bier sphere of the associated simplicial complex of “short sets”.

This is a preview of subscription content, access via your institution.

References

  1. Adiprasito, K., Benedetti, B.: A Cheeger-type exponential bound for the number of triangulated manifolds (2017). arXiv:1710.00130v2

  2. Benedetti, B., Ziegler, G.M.: On locally constructible spheres and balls. Acta Math. 206(2), 205–243 (2011)

    MathSciNet  Article  Google Scholar 

  3. Björner, A., Paffenholz, A., Sjöstrand, J., Ziegler, G.M.: Bier spheres and posets. Discrete Comput. Geom. 34(1), 71–86 (2005)

    MathSciNet  Article  Google Scholar 

  4. Connelly, R., Demaine, E.D.: Geometry and topology of polygonal linkages. In: Goodman, J.E., et al. (eds.) Handbook of Discrete and Computational Geometry, 3rd edn, pp. 233–256. CRC Press, Boca Raton (2017)

    Google Scholar 

  5. Čukić, SLj, Delucchi, E.: Simplicial shellable spheres via combinatorial blowups. Proc. Am. Math. Soc. 135(8), 2403–2414 (2007)

    MathSciNet  Article  Google Scholar 

  6. de Longueville, M.: Bier spheres and barycentric subdivision. J. Comb. Theory Ser. A 105(2), 355–357 (2004)

    MathSciNet  Article  Google Scholar 

  7. de Longueville, M.: A Course in Topological Combinatorics. Universitext. Springer, New York (2013)

  8. Delucchi, E., Hoessly, L.: Fundamental polytopes of metric trees via hyperplane arrangements (2016). arXiv:1612.05534

  9. Ewald, G.: Combinatorial Convexity and Algebraic Geometry. Graduate Texts in Mathematics, vol. 168. Springer, New York (1996)

    Book  Google Scholar 

  10. Ewald, G., Schulz, C.: Nonstarshaped spheres. Arch. Math. (Basel) 59(4), 412–416 (1992)

    MathSciNet  Article  Google Scholar 

  11. Farber, M.: Invitation to Topological Robotics. EMS Zurich Lectures in Advanced Mathematics. European Mathematical Society, Zürich (2008)

    Book  Google Scholar 

  12. Galashin, P., Panina, G.: Manifolds associated to simple games. J. Knot Theory Ramif. 25(12), Art. No. 1642003 (2016). arXiv:1311.6966

  13. Goodman, J.E., Pollack, R.: There are asymptotically far fewer polytopes than we thought. Bull. Am. Math. Soc. 14(1), 127–129 (1986)

    MathSciNet  Article  Google Scholar 

  14. Goodman, J.E., Pollack, R.: Upper bounds for configurations and polytopes in \(\mathbb{R}^d\). Discrete Comput. Geom. 1(3), 219–227 (1986)

    MathSciNet  Article  Google Scholar 

  15. Gordon, J., Petrov, F.: Combinatorics of the Lipschitz polytope. Arnold Math. J. 3(2), 205–218 (2017). arXiv:1608.06848

    MathSciNet  Article  Google Scholar 

  16. Jevtić, F.D., Jelić, M., Živaljević, R.T.: Cyclohedron and Kantorovich–Rubinstein polytopes. Arnold Math. J. 4(1), 87–112 (2018)

    MathSciNet  Article  Google Scholar 

  17. Jojić, D., Nekrasov, I., Panina, G., Živaljević, R.: Alexander \(r\)-tuples and Bier complexes. Publ. Inst. Math. (Beograd) (N.S.) 104(118), 1–22 (2018)

    MathSciNet  Article  Google Scholar 

  18. Kalai, G.: Many triangulated spheres. Discrete Comput. Geom. 3(1), 1–14 (1988)

    MathSciNet  Article  Google Scholar 

  19. Kantorovich, L.V.: On the translocation of masses. C. R. (Doklady) Acad. Sci. URSS (N.S.) 37, 199–201 (1942)

    MathSciNet  Google Scholar 

  20. Kantorovich, L.V., Rubinshtein, G.Sh.: On a space of totally additive functions. Vestnik Leningrad. Univ. 13(7), 52–59 (1958) (in Russian)

  21. Matoušek, J.: Using the Borsuk–Ulam Theorem. Lectures on Topological Methods in Combinatorics and Geometry. Universitext. Springer, Berlin (2003) (Corrected 2nd printing 2008)

  22. Melleray, J., Petrov, F.V., Vershik, A.M.: Linearly rigid metric spaces and the embedding problem. Fundam. Math. 199(2), 177–194 (2014)

    MathSciNet  Article  Google Scholar 

  23. Nevo, E., Santos, E., Wilson, S.: Many triangulated odd-dimensional spheres. Math. Ann. 364(3–4), 737–762 (2016)

    MathSciNet  Article  Google Scholar 

  24. Pfeifle, J., Ziegler, G.M.: Many triangulated 3-spheres. Math. Ann. 330(4), 829–837 (2004)

    MathSciNet  Article  Google Scholar 

  25. Timotijević, M.: Note on combinatorial structure of self-dual simplicial complexes. Mat. Vesnik 71(1–2), 104–122 (2019)

    MathSciNet  Google Scholar 

  26. Vershik, A.M.: Kantorovich metric: initial history and little-known applications. J. Math. Sci. (N.Y.) 133(4), 1410–1417 (2006)

    MathSciNet  Article  Google Scholar 

  27. Vershik, A.M.: Long history of the Monge–Kantorovich transportation problem. Math. Intell. 32(4), 1–9 (2013)

    MathSciNet  Article  Google Scholar 

  28. Vershik, A.M.: The problem of describing central measures on the path spaces of graded graphs. Funct. Anal. Appl. 48(4), 256–271 (2014)

    MathSciNet  Article  Google Scholar 

  29. Vershik, A.M.: Classification of finite metric spaces and combinatorics of convex polytopes. Arnold Math. J. 1(1), 75–81 (2015)

    MathSciNet  Article  Google Scholar 

  30. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  31. Villani, C.: Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009)

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported by the Grants 174020 and 174034 of the Ministry of Education, Science and Technological Development of the Republic of Serbia. It is our pleasure to acknowledge valuable remarks and useful suggestions by Bernd Sturmfels, Günter M. Ziegler, Siniša Vrećica, Duško Jojić, Vladimir Grujić, members of Belgrade CGTA-seminar, and the anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rade T. Živaljević.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jevtić, F.D., Timotijević, M. & Živaljević, R.T. Polytopal Bier Spheres and Kantorovich–Rubinstein Polytopes of Weighted Cycles. Discrete Comput Geom 65, 1275–1286 (2021). https://doi.org/10.1007/s00454-019-00151-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-019-00151-5

Keywords

  • Kantorovich–Rubinstein polytopes
  • Gale transform
  • Bier spheres
  • Polyhedral combinatorics
  • Simplicial Steinitz problem
  • Polygonal linkages

Mathematics Subject Classification

  • 52B12
  • 52B35
  • 52B70