Skip to main content
Log in

\(L_1\) Geodesic Farthest Neighbors in a Simple Polygon and Related Problems

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We investigate the \(L_1\) geodesic farthest neighbors in a simple polygon P, and address several fundamental problems related to farthest neighbors. Given a subset \(S \subseteq P\), an \(L_1\) geodesic farthest neighbor of \(p \in P\) from S is one that maximizes the length of \(L_1\) shortest path from p in P. Our list of problems include: computing the diameter, radius, center, farthest-neighbor Voronoi diagram, and two-center of S under the \(L_1\) geodesic distance. We show that all these problems can be solved in linear or near-linear time based on our new observations on farthest neighbors and extreme points. Among them, the key observation shows that there are at most four extreme points of any compact subset \(S \subseteq P\) with respect to the \(L_1\) geodesic distance after removing redundancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. If \(\pi \) is polygonal, then \(|\pi |\) is the sum of the \(L_1\) distances between its consecutive vertices. In general, \(|\pi |\) is the limit of the sequence \(|\pi _1|, |\pi _2|, \ldots \) such that each \(\pi _i\) for \(i=1, 2, \ldots \) is a polygonal path and the sequence \(\pi _1, \pi _2, \ldots \) converges to \(\pi \).

References

  1. Ahn, H.K., Barba, L., Bose, P., De Carufel, J.-L., Korman, M., Oh, E.: A linear-time algorithm for the geodesic center of a simple polygon. Discrete Comput. Geom. 56(4), 836–859 (2016)

    Article  MathSciNet  Google Scholar 

  2. Aronov, B., Fortune, S., Wilfong, G.: The furthest-site geodesic Voronoĭ diagram. Discrete Comput. Geom. 9(3), 217–255 (1993)

    Article  MathSciNet  Google Scholar 

  3. Bae, S.W., Korman, M., Okamoto, Y., Wang, H.: Computing the $L_1$ geodesic diameter and center of a simple polygon in linear time. Comput. Geom. 48(6), 495–505 (2015)

    Article  MathSciNet  Google Scholar 

  4. Barba, L.: Optimal algorithm for geodesic farthest-point Voronoi diagrams. In: Proceedings of the 35th Symposium on Computational Geometry (SoCG 2019). LIPIcs (2019)

  5. Chan, T.M.: More planar two-center algorithms. Comput. Geom. 13(3), 189–198 (1999)

    Article  MathSciNet  Google Scholar 

  6. Drezner, Z.: On the rectangular $p$-center problem. Nav. Res. Logist. 34(2), 229–234 (1987)

    Article  MathSciNet  Google Scholar 

  7. Guibas, L.J., Hershberger, J.: Optimal shortest path queries in a simple polygon. J. Comput. Syst. Sci. 39(2), 126–152 (1989)

    Article  MathSciNet  Google Scholar 

  8. Guibas, L.J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2(2), 209–233 (1987)

    Article  MathSciNet  Google Scholar 

  9. Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homotopy class. Comput. Geom. 4(2), 63–97 (1994)

    Article  MathSciNet  Google Scholar 

  10. Hershberger, J., Suri, S.: Matrix searching with the shortest path metric. SIAM J. Comput. 26(6), 1612–1634 (1997)

    Article  MathSciNet  Google Scholar 

  11. Megiddo, N.: Linear-time algorithms for linear programming in ${ R}^3$ and related problems. SIAM J. Comput. 12(4), 759–776 (1983)

    Article  MathSciNet  Google Scholar 

  12. Oh, E., Barba, L., Ahn, H.K.: The farthest-point geodesic Voronoi diagram of points on the boundary of a simple polygon. In: Fekete, S., Lubiw, A. (eds.). Proceedings of the 32nd Symposium on Computational Geometry (SoCG 2016), vol. 51, pp. 56:1–56:15. LIPIcs, Leibniz International Proceedings in Informatics, Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2016)

  13. Oh, E., Bae, S.W., Ahn, H.-K.: Computing a geodesic two-center of points in a simple polygon. Comput. Geom. 82, 45–59 (2019)

    Article  MathSciNet  Google Scholar 

  14. Oh, E., De Carufel, J.L., Ahn, H.K.: The 2-center problem in a simple polygon. Comput. Geom. 74, 21–37 (2018)

    Article  MathSciNet  Google Scholar 

  15. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Texts and Monographs in Computer Science. Springer, New York (1985)

    Book  Google Scholar 

  16. Toussaint, G.T.: Computing geodesic properties inside a simple polygon. Revue D’Intelligence Artificielle 3, 9–42 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Won Bae.

Additional information

Editor in Charge: Kenneth Clarkson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A1A01057220 and 2018R1D1A1B07042755). A preliminary version of this work was presented at ISAAC 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, S.W. \(L_1\) Geodesic Farthest Neighbors in a Simple Polygon and Related Problems. Discrete Comput Geom 62, 743–774 (2019). https://doi.org/10.1007/s00454-019-00110-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-019-00110-0

Keywords

Mathematics Subject Classification

Navigation