On the Structure of Ammann A2 Tilings

  • Bruno Durand
  • Alexander Shen
  • Nikolay VereshchaginEmail author


We establish a structure theorem for the family of Ammann A2 tilings of the plane. Using that theorem we show that every Ammann A2 tiling is self-similar in the sense of Solomyak (Discret Comput Geom 20:265–279, 1998). By the same techniques we show that Ammann A2 tilings are not robust in the sense of Durand et al. (J Comput Syst Sci 78(3):731–764, 2012).


Ammann tilings Non-periodic tilings Self-similar tilings Substitution tilings Robust tilings 



We are sincerely grateful to G. Varouchas, M. Raskin and to anonymous referees for helpful remarks. We thank A. Korotin for a careful reading a preliminary version of the text, which helped to improve essentially the exposition.


  1. 1.
    Akiyama, S.: A note on aperiodic Ammann tiles. Discret. Comput. Geom. 48(3), 702–710 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ammann, R., Grünbaum, B., Shephard, G.C.: Aperiodic tiles. Discret. Comput. Geom. 8(1), 1–25 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Durand, B., Romashchenko, A., Shen, A.: Fixed-point tile sets and their applications. J. Comput. Syst. Sci. 78(3), 731–764 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Goodman-Strauss, C.: Matching rules and substitution tilings. Ann. Math. 147(1), 181–223 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Grünbaum, B., Shephard, G.C.: Tilings and Patterns. Freeman, New York (1986)zbMATHGoogle Scholar
  6. 6.
    Korotin, A.: Personal communication (2015)Google Scholar
  7. 7.
    Scherer, K.: A puzzling journey to the reptiles and related animals. Privately published (1987)Google Scholar
  8. 8.
    Solomyak, B.: Nonperiodicity implies unique composition for self-similar translationally finite tilings. Discret. Comput. Geom. 20(2), 265–279 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LIRMMUniversité de Montpellier IIMontpellierFrance
  2. 2.Moscow State University and National Research University Higher School of EconomicsMoscowRussian Federation

Personalised recommendations