Skip to main content

The Chromatic Number of the Plane is At Least 5: A New Proof

Abstract

We present an alternate proof of the fact that given any 4-coloring of the plane there exist two points one unit apart which are identically colored.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Bellitto, T., Pêcher, A., Sèdillot, A.: On the density of sets of the Euclidean plane avoiding distance 1 (2018). arXiv:1810.00960v1

  2. 2.

    Cranston, D.W., Rabern, L.: The fractional chromatic number of the plane. Combinatorica 37(5), 837–861 (2017)

    MathSciNet  Article  Google Scholar 

  3. 3.

    de Grey, A.D.N.J.: The chromatic number of the plane is at least \(5\). Geombinatorics 28(1), 18–31 (2018)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Exoo, G., Ismailescu, D.: A unit distance graph in the plane with fractional chromatic number 383/102. Geombinatorics 26(3), 122–127 (2017)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Graph Data. http://cs.indstate.edu/ge/ExooIsmailescuData

  6. 6.

    Hadwiger–Nelson Problem. http://michaelnielsen.org/polymath1/index.php?title=Hadwiger-Nelson_problem

  7. 7.

    Hadwiger, H.: Ueberdeckung des Euklidischen Raumes durch kongruente Mengen. Port. Math. 4(4), 238–242 (1945)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Heule, M.J.H.: Computing small unit-distance graphs with chromatic number 5. Geombinatorics 28(1), 32–50 (2018)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Madore, D.A.: The Hadwiger–Nelson problem over certain fields (2015). arXiv:1509.07023

  10. 10.

    Moser, L., Moser, W.: Solution to problem \(10\). Can. Math. Bull. 4, 187–189 (1961)

    Google Scholar 

  11. 11.

    Soifer, A.: The mathematical coloring book. Mathematics of coloring and the colorful life of its creators. With forewords by Branko Grünbaum, Peter D. Johnson, Jr. and Cecil Rousseau. Springer, New York (2009)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dan Ismailescu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by Grant No. 1751765 from the National Science Foundation, USA.

Editor in Charge: Kenneth Clarkson

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Exoo, G., Ismailescu, D. The Chromatic Number of the Plane is At Least 5: A New Proof. Discrete Comput Geom 64, 216–226 (2020). https://doi.org/10.1007/s00454-019-00058-1

Download citation

Keywords

  • Chromatic number of the plane
  • Hadwiger–Nelson problem
  • Unit distance graphs