Skip to main content
Log in

Approximating a Convex Body by a Polytope Using the Epsilon-Net Theorem

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We prove that roughly \(\frac{d}{(1-\vartheta )^d}\ln \frac{1}{(1-\vartheta )^d}\) points chosen uniformly and independently from a centered convex body K in \({\mathbb {R}}^d\) yield a polytope P for which \(\vartheta K\subseteq P\subseteq K\) holds with large probability. This gives a joint generalization of results of Brazitikos, Chasapis and Hioni and of Giannopoulos and Milman.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon, N., Spencer, J.H.: The Probabilistic Method, 4th edn. Discrete Mathematics and Optimization. Wiley, Hoboken (2016)

  2. Bárány, I.: Random polytopes, convex bodies, and approximation. In: Weil, W. (ed.) Stochastic Geometry. Lecture Notes in Mathematics, vol. 1892, pp. 77–118. Springer, Berlin (2007)

    Google Scholar 

  3. Barvinok, A.: Thrifty approximations of convex bodies by polytopes. Int. Math. Res. Not. IMRN 2014(16), 4341–4356 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brazitikos, S., Chasapis, G., Hioni, L.: Random approximation and the vertex index of convex bodies. Arch. Math. (Basel) 108(2), 209–221 (2017). https://doi.org/10.1007/s00013-016-0975-2

    Article  MathSciNet  MATH  Google Scholar 

  5. Bronshteĭ n, E.M.: Approximation of convex sets by polyhedra. J. Math. Sci. (N.Y.) 153(6), 727–762 (2008)

    Article  MathSciNet  Google Scholar 

  6. Fradelizi, M., Meyer, M., Yaskin, V.: On the volume of sections of a convex body by cones. Proc. Amer. Math. Soc. 145(7), 3153–3164 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Giannopoulos, A.A., Milman, V.D.: Concentration property on probability spaces. Adv. Math. 156(1), 77–106 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gordon, Y., Litvak, A.E., Pajor, A., Tomczak-Jaegermann, N.: Random \(\epsilon\)-nets and embeddings in \(l^N_\infty\). Stud. Math. 178(1), 91–98 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gruber, P.M.: Aspects of approximation of convex bodies. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry, vol. A,B, pp. 319–345. Elsevier, Amsterdam (1993)

    Chapter  Google Scholar 

  10. Grünbaum, B.: Partitions of mass-distributions and of convex bodies by hyperplanes. Pac. J. Math. 10, 1257–1261 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haussler, D., Welzl, E.: \(\epsilon\)-nets and simplex range queries. Discrete Comput. Geom. 2(2), 127–151 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Komlós, J., Pach, J., Woeginger, G.: Almost tight bounds for \(\epsilon\)-nets. Discrete Comput. Geom. 7(2), 163–173 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer, New York (2002)

    Book  MATH  Google Scholar 

  14. Meyer, M., Nazarov, F., Ryabogin, D., Yaskin, V.: Generalized Grünbaum inequality. http://arxiv.org/abs/1706.02373 [math] (2017)

  15. Mustafa, N.H., Varadarajan, K.: Epsilon-approximations & epsilon-nets. In: Jacob, J.O., Goodman, E., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry. CRC Press LLC, Boca Raton (2018)

    Google Scholar 

  16. Naszódi, M., Nazarov, F., Ryabogin, D.: Fine approximation of convex bodies by polytopes. http://arxiv.org/abs/1705.01867 [math] (2017)

  17. Pach, J., Agarwal, P.K.: Combinatorial Geometry. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  18. Sauer, N.: On the density of families of sets. J. Comb. Theory Ser. A 13, 145–147 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. In: Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge (2014)

  20. Shelah, S.: A combinatorial problem; stability and order for models and theories in infinitary languages. Pac. J. Math. 41, 247–261 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vapnik, V.N., Červonenkis, A.J.: On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities, vol. 181(4), pp. 781–783. Doklady Akademii Nauk (1968) (in Russian)

Download references

Acknowledgements

The author thanks Nabil Mustafa for enlightening conversations on the \(\varepsilon \)-net theorem and topics around it. I also thank the anonymous referees whose remarks helped fix some errors and improve the presentation. The research was partially supported by the National Research, Development and Innovation Fund Grant K119670, and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, and by the ÚNKP-17-4 New National Excellence Program of the Ministry of Human Capacities. Part of the work was carried out during a stay at EPFL, Lausanne at János Pach’s Chair of Discrete and Computational Geometry supported by the Swiss National Science Foundation Grants 200020-162884 and 200021-165977.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márton Naszódi.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naszódi, M. Approximating a Convex Body by a Polytope Using the Epsilon-Net Theorem. Discrete Comput Geom 61, 686–693 (2019). https://doi.org/10.1007/s00454-018-9977-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-018-9977-0

Keywords

Mathematics Subject Classification

Navigation