Skip to main content
Log in

On Lattice Path Matroid Polytopes: Integer Points and Ehrhart Polynomial

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

In this paper we investigate the number of integer points lying in dilations of lattice path matroid polytopes. We give a characterization of such points as polygonal paths in the diagram of the lattice path matroid. Furthermore, we prove that lattice path matroid polytopes are affinely equivalent to a family of distributive polytopes. As applications we obtain two new infinite families of matroids verifying a conjecture of De Loera et. al. and present an explicit formula of the Ehrhart polynomial for one of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. An, S., Jung, J., Kim, S.: Facial structures of lattice path matroid polytopes. arXiv:1701.00362 (2017)

  2. Bidkhori, H.: Lattice path matroid polytopes. arXiv:1212.5705 (2012)

  3. Birkhoff, G.: Rings of sets. Duke Math. J. 3(3), 443–454 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonin, J.E.: Lattice path matroids: the excluded minors. J. Combin. Theory Ser. B 100(6), 585–599 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonin, J., de Mier, A., Noy, M.: Lattice path matroids: enumerative aspects and Tutte polynomials. J. Combin. Theory Ser. A 104(1), 63–94 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonin, J.E., Giménez, O.: Multi-path matroids. Combin. Probab. Comput. 16(2), 193–217 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brändén, P.: Unimodality, log-concavity, real-rootedness and beyond. In: Bona, M. (ed.) Handbook of Enumerative Combinatorics. Discrete Mathematics and Its Applications, pp. 437–483. CRC Press, Boca Raton (2015)

    Chapter  Google Scholar 

  8. Chatelain, V., Ramírez Alfonsín, J.L.: Matroid base polytope decomposition. Adv. Appl. Math. 47(1), 158–172 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, E., Tetali, P., Yeliussizov, D.: Lattice path matroids: negative correlation and fast mixing. arXiv:1505.06710 (2015)

  10. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, New York (2002)

    Book  MATH  Google Scholar 

  11. De Loera, J.A., Haws, D.C., Köppe, M.: Ehrhart polynomials of matroid polytopes and polymatroids. Discrete Comput. Geom. 42(4), 670–702 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Delucchi, E., Dlugosch, M.: Bergman complexes of lattice path matroids. SIAM J. Discrete Math. 29(4), 1916–1930 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. (2) 51(1), 161–166 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ehrhart, E.: Sur les polyèdres rationnels homothétiques à \(n\) dimensions. C. R. Acad. Sci. 254, 616–618 (1962)

    MathSciNet  MATH  Google Scholar 

  15. Feichtner, E.M., Sturmfels, B.: Matroid polytopes, nested sets and Bergman fans. Port. Math. (N.S.) 62(4), 437–468 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Felsner, S., Knauer, K.: Distributive lattices, polyhedra, and generalized flows. Eur. J. Combin. 32(1), 45–59 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Katzman, M.: The Hilbert series of Veronese type. Commun. Algebra 33(4), 1141–1146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Knauer, K., Martínez-Sandoval, L., Alfonsín, J.L.: A Tutte polynomial inequality for lattice path matroids. Adv. Appl. Math. 94, 23–38 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Morton, J., Turner, J.: Computing the Tutte polynomial of lattice path matroids using determinantal circuits. Theor. Comput. Sci. 598, 150–156 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Neggers, J.: Representations of finite partially ordered sets. J. Combin. Inf. Syst. Sci. 3(3), 113–133 (1978)

    MathSciNet  MATH  Google Scholar 

  21. Oxley, J.: Matroid Theory. Oxford Graduate Texts in Mathematics, vol. 21, 2nd edn. Oxford University Press, Oxford (2011)

    Google Scholar 

  22. Reiner, V., Welker, V.: On the Charney–Davis and Neggers–Stanley conjectures. J. Combin. Theory Ser. A 109(2), 247–280 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schweig, J.: On the \(h\)-vector of a lattice path matroid. Electron. J. Combin. 17(1), Note 3 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Schweig, J.: Toric ideals of lattice path matroids and polymatroids. J. Pure Appl. Algebra 215(11), 2660–2665 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Simion, R.: A multi-indexed Sturm sequence of polynomials and unimodality of certain combinatorial sequences. J. Combin. Theory Ser. A 36(1), 15–22 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stanley, R.P.: A chromatic-like polynomial for ordered sets. In: Proceedings of the 2nd Chapel Hill Conference on Combinatorial Mathematics and its Applications, pp. 421–427. University of North Carolina, Chapel Hill (1970)

  27. Stanley, R.P.: Two poset polytopes. Discrete Comput. Geom. 1(1), 9–23 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stembridge, J.R.: Enriched \(P\)-partitions. Trans. Am. Math. Soc. 349(2), 763–788 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stembridge, J.R.: Counterexamples to the poset conjectures of Neggers, Stanley, and Stembridge. Trans. Am. Math. Soc. 359(3), 1115–1128 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wagner, D.G.: Total positivity of Hadamard products. J. Math. Anal. Appl. 163(2), 459–483 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Welsh, D.J.A.: Matroid Theory. L. M. S. Monographs, vol. 8. Academic Press, London (1976)

    Google Scholar 

Download references

Acknowledgements

The first author was partially supported by ANR Grants GATO ANR-16-CE40-0009-01 and CAPPS ANR-17-CE40-0018. The second author was supported by the Israel Science Foundation Grant No. 1452/15 and the European Research Council H2020 programme Grant No. 678765. The last two authors were partially supported by ECOS Nord Project M13M01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolja Knauer.

Additional information

Editor in Charge: Kenneth Clarkson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knauer, K., Martínez-Sandoval, L. & Ramírez Alfonsín, J.L. On Lattice Path Matroid Polytopes: Integer Points and Ehrhart Polynomial. Discrete Comput Geom 60, 698–719 (2018). https://doi.org/10.1007/s00454-018-9965-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-018-9965-4

Keywords

Navigation