Skip to main content
Log in

On the Number of Ordinary Lines Determined by Sets in Complex Space

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Kelly’s theorem states that a set of n points affinely spanning \({\mathbb {C}}^3\) must determine at least one ordinary complex line (a line incident to exactly two of the points). Our main theorem shows that such sets determine at least 3n / 2 ordinary lines, unless the configuration has \(n-1\) points in a plane and one point outside the plane (in which case there are at least \(n-1\) ordinary lines). In addition, when at most n / 2 points are contained in any plane, we prove stronger bounds that take advantage of the existence of lines with four or more points (in the spirit of Melchior’s and Hirzebruch’s inequalities). Furthermore, when the points span four or more dimensions, with at most n / 2 points contained in any three-dimensional affine subspace, we show that there must be a quadratic number of ordinary lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We note that while the Fermat configuration as stated lives in the projective plane, it can be made affine by any projective transformation that moves a line with no points to the line at infinity.

References

  1. Alon, N.: Perturbed identity matrices have high rank: proof and applications. Combin. Probab. Comput. 18(1–2), 3–15 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barak, B., Dvir, Z., Wigderson, A., Yehudayoff, A.: Fractional Sylvester–Gallai theorems. Proc. Natl. Acad. Sci. USA 110(48), 19213–19219 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bojanowski, R.: Zastosowania uogólnionej nierówności Bogomolova–Miyaoki–Yau. Master’s thesis, University of Warsaw (2013)

  4. Borwein, P., Moser, W.O.J.: A survey of Sylvester’s problem and its generalizations. Aequationes Math. 40(1), 111–135 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brayton, R.K., Coppersmith, D., Hoffman, A.J.: Self-orthogonal latin squares of all orders \(n \ne 2, 3, 6\). Bull. Am. Math. Soc. 80(1), 116–118 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Csima, J., Sawyer, E.T.: There exist \(6n/13\) ordinary points. Discrete Comput. Geom. 9(2), 187–202 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Zeeuw, F.: Ordinary lines in space (2018). arXiv:1803.09524

  8. de Zeeuw, F.: Spanned lines and Langer’s inequality (2018). arXiv:1802.08015

  9. Dvir, Z., Saraf, S., Wigderson, A.: Improved rank bounds for design matrices and a new proof of Kelly’s theorem. Forum Math. Sigma 2, e4 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Elkies, N., Pretorius, L.M., Swanepoel, K.J.: Sylvester–Gallai theorems for complex numbers and quaternions. Discrete Comput. Geom. 35(3), 361–373 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gallai, T.: Solution of problem 4065. Am. Math. Monthly 51, 169–171 (1944)

    Article  Google Scholar 

  12. Green, B., Tao, T.: On sets defining few ordinary lines. Discrete Comput. Geom. 50(2), 409–468 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hilton, A.J.W.: On double diagonal and cross latin squares. J. London Math. Soc. 2(4), 679–689 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hirzebruch, F.: Arrangements of lines and algebraic surfaces. In: Artin, M., Tate, J. (eds.) Arithmetic and Geometry, Vol. II. Progress in Mathematics, vol. 36, pp. 113–140. Birkhäuser, Boston (1983)

    Chapter  Google Scholar 

  15. Kelly, L.: A resolution of the Sylvester–Gallai problem of J.-P. Serre. Discrete Comput. Geom. 1(1), 101–104 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kelly, L., Moser, W.: On the number of ordinary lines determined by \(n\) points. Canad. J. Math. 10, 210–219 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  17. Langer, A.: Logarithmic orbifold Euler numbers of surfaces with applications. Proc. London Math. Soc. 86(2), 358–396 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Melchior, E.: Über vielseite der projektiven ebene. Deutsch. Math. 5, 461–475 (1940)

    MathSciNet  MATH  Google Scholar 

  19. Motzkin, T.: The lines and planes connecting the points of a finite set. Trans. Am. Math. Soc. 70, 451–464 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pokora, P.: The orbifold Langer–Miyaoka–Yau inequality and Hirzebruch-type inequalities (2016). arXiv:1612.05141

  21. Rothblum, U., Schneider, H.: Scalings of matrices which have prespecified row sums and column sums via optimization. Linear Algebra Appl. 114, 737–764 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Serre, J.-P.: Advanced problem 5359. Am. Math. Monthly 73(1), 89 (1966)

    Google Scholar 

  23. Sylvester, J.J.: Mathematical question 11851. Educ. Times 59(98), 256 (1893)

    Google Scholar 

Download references

Acknowledgements

Zeev Dvir: Research was supported by NSF CAREER award DMS-1451191 and NSF Grant CCF-1523816. Shubhangi Saraf: Research was supported in part by NSF Grants CCF-1350572 and CCF-1540634. Charles Wolf: Research was supported in part by NSF Grant CCF-1350572.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Basit.

Additional information

Editor in Charge: Kenneth Clarkson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basit, A., Dvir, Z., Saraf, S. et al. On the Number of Ordinary Lines Determined by Sets in Complex Space. Discrete Comput Geom 61, 778–808 (2019). https://doi.org/10.1007/s00454-018-0039-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-018-0039-4

Keywords

Navigation