Skip to main content
Log in

Multihomogeneous Nonnegative Polynomials and Sums of Squares

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We refine and extend quantitative bounds on the fraction of nonnegative polynomials that are sums of squares to the multihomogeneous case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin, H.: Über die Zerlegung definiter Funktionen in Quadrate. Abh. Math. Semin. Univ. Hamb. 5(1), 100–115 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barvinok, A.: Estimating \(L^{\infty }\) norms by \(L^{2k}\) norms for functions on orbits. Found. Comput. Math. 2(4), 393–412 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barvinok, A., Blekherman, G.: Convex geometry of orbits. In: Goodman, J.E., et al. (eds.) Combinatorial and Computational Geometry. Mathematical Sciences Research Institute Publications, vol. 52, pp. 51–77. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  4. Blekherman, G.: Convexity properties of the cone of nonnegative polynomials. Discrete Comput. Geom. 32(3), 345–371 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blekherman, G.: There are significantly more nonnegative polynomials than sums of squares. Isr. J. Math. 153, 355–380 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blekherman, G., Smith, G., Velasco, M.: Sums of squares and varieties of minimal degree. J. Am. Math. Soc. 29(3), 893–913 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain, J., Milman, V.D.: New volume ratio properties for convex symmetric bodies in \(\mathbb{R}^n\). Invent. Math. 88(2), 319–340 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brazitikos, S., Giannopoulos, A., Valettas, P., Vritsiou, B.-H.: Geometry of Isotropic Convex Bodies. Mathematical Surveys and Monographs, vol. 196. American Mathematical Society, Providence (2014)

  9. Choi, M.D., Lam, T.Y., Reznick, B.: Real zeros of positive semidefinite forms. I. Math. Z. 171(1), 1–26 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duoandikoetxea, J.: Reverse Hölder inequalities for spherical harmonics. Proc. Am. Math. Soc. 101(3), 487–491 (1987)

    MATH  Google Scholar 

  11. Helgason, S.: Groups and Geometric Analysis. Pure and Applied Mathematics, vol. 113. Academic Press, Orlando (1984)

    MATH  Google Scholar 

  12. Hilbert, D.: Über die Darstellung definiter Formen als Summe von Formenquadraten. Math. Ann. 32, 342–350 (1888)

    Article  MathSciNet  MATH  Google Scholar 

  13. John, F.: Extremum problems with inequalities as subsidiary conditions. Studies and Essays Presented to R. Courant on his 60th Birthday, pp. 187–204. Interscience, New York (1948)

    Google Scholar 

  14. Klep, I., McCullough, S., Šivic, K., Zalar, A.: There are many more positive maps than completely positive maps. Int. Math. Res. Not. (2017). https://doi.org/10.1093/imrn/rnx203

  15. Lutwak, E., Yang, D., Zhang, G.: Volume inequalities for isotropic measures. Am. J. Math. 129(6), 1711–1723 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Müller, C.: Analysis of Spherical Symmetries in Euclidean Spaces. Applied Mathematical Sciences, vol. 129. Springer, New York (1998)

    MATH  Google Scholar 

  17. Parrilo, P.A., Lall, S.: Semidefinite programming relaxations and algebraic optimization in control. Eur. J. Control 9(2–3), 307–321 (2003)

    Article  MATH  Google Scholar 

  18. Pisier, G.: The Volume of Convex Bodies and Banach Space Geometry. Cambridge Tracts in Mathematics, vol. 94. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  19. Reznick, B.: Extremal PSD forms with few terms. Duke Math. J. 45(2), 363–374 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Reznick, B.: Uniform denominators in Hilbert’s seventeenth problem. Math. Z. 220(1), 75–97 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vaaler, J.D.: A geometric inequality with applications to linear forms. Pac. J. Math. 83(2), 543–553 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Greg Blekherman for useful discussions over e-mail. Ideas developed in Greg Blekherman’s articles had a strong influence on parts of this note. I also would like to thank Petros Valettas and Grigoris Paouris for helpful discussions and splendid hospitality at Athens, College Station and wherever else we were able to meet. While I was writing this note, I was enjoying hospitality of Özgur Kişisel at METU, many thanks go to him. Last but not the least, I would like to thank J. Maurice Rojas for introducing me to quantitative aspects of Hilbert’s \({17}\mathrm{th}\) problem, and for many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alperen A. Ergür.

Additional information

Editor in Charge: János Pach

Partially supported by NSF-MCS Grant DMS-0915245, NSF-CAREER Grant DMS-1151711, and Einstein Foundation, Berlin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ergür, A.A. Multihomogeneous Nonnegative Polynomials and Sums of Squares. Discrete Comput Geom 60, 318–344 (2018). https://doi.org/10.1007/s00454-018-0011-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-018-0011-3

Keywords

Mathematics Subject Classification

Navigation