# On Planar Greedy Drawings of 3-Connected Planar Graphs

• Giordano Da Lozzo
• Anthony D’Angelo
• Fabrizio Frati
Article

## Abstract

A graph drawing is greedy if, for every ordered pair of vertices (xy), there is a path from x to y such that the Euclidean distance to y decreases monotonically at every vertex of the path. Greedy drawings support a simple geometric routing scheme, in which any node that has to send a packet to a destination “greedily” forwards the packet to any neighbor that is closer to the destination than itself, according to the Euclidean distance in the drawing. In a greedy drawing such a neighbor always exists and hence this routing scheme is guaranteed to succeed. In 2004 Papadimitriou and Ratajczak stated two conjectures related to greedy drawings. The greedy embedding conjecture states that every 3-connected planar graph admits a greedy drawing. The convex greedy embedding conjecture asserts that every 3-connected planar graph admits a planar greedy drawing in which the faces are delimited by convex polygons. In 2008 the greedy embedding conjecture was settled in the positive by Leighton and Moitra. In this paper we prove that every 3-connected planar graph admits a planar greedy drawing. Apart from being a strengthening of Leighton and Moitra’s result, this theorem constitutes a natural intermediate step towards a proof of the convex greedy embedding conjecture.

## Keywords

Planar drawing Greedy drawing 3-Connected graph Strong circuit graph

## Mathematics Subject Classification

Primary 68R10 Secondary 05C10

## References

1. 1.
Alamdari, S., Chan, T.M., Grant, E., Lubiw, A., Pathak, V.: Self-approaching graphs. In: Didimo, W., Patrignani, M. (eds.) 20th International Symposium on Graph Drawing (GD’12). Lecture Notes in Computer Science, vol. 7704, pp. 260–271. Springer, Heidelberg (2013)Google Scholar
2. 2.
Angelini, P., Colasante, E., Di Battista, G., Frati, F., Patrignani, M.: Monotone drawings of graphs. J. Graph Algorithms Appl. 16(1), 5–35 (2012)
3. 3.
Angelini, P., Di Battista, G., Frati, F.: Succinct greedy drawings do not always exist. Networks 59(3), 267–274 (2012)
4. 4.
Angelini, P., Frati, F., Grilli, L.: An algorithm to construct greedy drawings of triangulations. In: Tollis, I.G., Patrignani, M. (eds.) 16th International Symposium on Graph Drawing (GD’08). Lecture Notes in Computer Science, vol. 5417, pp. 26–37. Springer, Berlin (2009)Google Scholar
5. 5.
Angelini, P., Frati, F., Grilli, L.: An algorithm to construct greedy drawings of triangulations. J. Graph Algorithms Appl. 14(1), 19–51 (2010)
6. 6.
Barnette, D.: Trees in polyhedral graphs. Can. J. Math. 18, 731–736 (1966)
7. 7.
Bonichon, N., Bose, P., Carmi, P., Kostitsyna, I., Lubiw, A., Verdonschot, S.: Gabriel triangulations and angle-monotone graphs: Local routing and recognition. In: Hu, Y., Nöllenburg, M. (eds.) 24th International Symposium on Graph Drawing and Network Visualization (GD’16). Lecture Notes in Computer Science, vol. 9801, pp. 519–531. Springer, Cham (2016)
8. 8.
Bose, P., Morin, P., Stojmenović, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. Wirel. Netw. 7(6), 609–616 (2001)
9. 9.
Chen, G., Yu, X.: Long cycles in 3-connected graphs. J. Comb. Theory Ser. B 86(1), 80–99 (2002)
10. 10.
Da Lozzo, G., Dujmović, V., Frati, F., Mchedlidze, T., Roselli, V.: Drawing planar graphs with many collinear vertices. In: Hu, Y., Nöllenburg, M. (eds.) 24th International Symposium on Graph Drawing and Network Visualization (GD’16). Lecture Notes in Computer Science, vol. 9801, pp. 152–165. Springer, Cham (2016)
11. 11.
Dehkordi, H.R., Frati, F., Gudmundsson, J.: Increasing-chord graphs on point sets. J. Graph Algorithms Appl. 19(2), 761–778 (2015)
12. 12.
Dhandapani, R.: Greedy drawings of triangulations. Discrete Comput. Geom. 43(2), 375–392 (2010)
13. 13.
Eppstein, D., Goodrich, M.T.: Succinct greedy geometric routing using hyperbolic geometry. IEEE Trans. Comput. 60(11), 1571–1580 (2011)
14. 14.
Felsner, S., Igamberdiev, A., Kindermann, P., Klemz, B., Mchedlidze, T., Scheucher, M.: Strongly monotone drawings of planar graphs. In: 32nd International Symposium on Computational Geometry (SoCG’16). Leibniz International Proceedings in Informatics, vol. 51, pp. 37:1–37:15. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2016)Google Scholar
15. 15.
Finn, G.G.: Routing and addressing problems in large metropolitan-scale internetworks. Tech. Rep. ISI/RR-87-180. University of Southern California, Information Sciences Institute (1987)Google Scholar
16. 16.
Frey, H., Rührup, S., Stojmenović, I.: Routing in wireless sensor networks. In: Misra, S.C., Woungang, I., Misra, S. (eds.) Guide to Wireless Sensor Networks: Computer Communications and Networks, Chap. 4, pp. 81–111. Springer, Berlin (2009)
17. 17.
Goodrich, M.T., Strash, D.: Succinct greedy geometric routing in the Euclidean plane. In: Dong, Y., Du, D.Z., Ibarra, O.H. (eds.) 20th International Symposium on Algorithms and Computation (ISAAC’09). Lecture Notes in Computer Science, vol. 5878, pp. 781–791. Springer, Berlin (2009)
18. 18.
He, X., Zhang, H.: On succinct greedy drawings of plane triangulations and 3-connected plane graphs. Algorithmica 68(2), 531–544 (2014)
19. 19.
Hong, S.-H., Nagamochi, H.: Convex drawings of hierarchical planar graphs and clustered planar graphs. J. Discrete Algorithms 8(3), 282–295 (2010)
20. 20.
Kindermann, P., Schulz, A., Spoerhase, J., Wolff, A.: On monotone drawings of trees. In: Duncan, C.A., Symvonis, A. (eds.) 22nd International Symposium on Graph Drawing (GD’14). Lecture Notes in Computer Science, vol. 8871, pp. 488–500. Springer, Heidelberg (2014)Google Scholar
21. 21.
Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In: Proceedings of the 11th Canadian Conference on Computational Geometry (CCCG’99), pp. 51–54 (1999)Google Scholar
22. 22.
Kuhn, F., Wattenhofer, R., Zollinger, A.: An algorithmic approach to geographic routing in ad hoc and sensor networks. IEEE/ACM Trans. Netw. 16(1), 51–62 (2008)
23. 23.
Leighton, T., Moitra, A.: Some results on greedy embeddings in metric spaces. Discrete Comput. Geom. 44(3), 686–705 (2010)
24. 24.
Moitra, A., Leighton, T.: Some results on greedy embeddings in metric spaces. In: Ravi, R. (ed.) Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS’08), pp. 337–346. IEEE Computer Society (2008)Google Scholar
25. 25.
Nöllenburg, M., Prutkin, R.: Euclidean greedy drawings of trees. Discrete Comput. Geom. 58(3), 543–579 (2017)
26. 26.
Nöllenburg, M., Prutkin, R., Rutter, I.: On self-approaching and increasing-chord drawings of 3-connected planar graphs. J. Comput. Geom. 7(1), 47–69 (2016)
27. 27.
Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) First International Workshop on Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSORS’04). Lecture Notes in Computer Science, vol. 3121, pp. 9–17. Springer, Berlin (2004)
28. 28.
Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing. Theor. Comput. Sci. 344(1), 3–14 (2005)
29. 29.
Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic routing without location information. In: Johnson, D.B., Joseph, A.D., Vaidya, N.H. (eds.) Proceedings of the 9th Annual International Conference on Mobile Computing and Networking (MobiCom’03), pp. 96–108. ACM, New York (2003)Google Scholar
30. 30.
Siva Ram Murthy, C., Manoj, B.: Ad Hoc Wireless Networks: Architectures and Protocols. Prentice Hall, Upper Saddle River (2004)Google Scholar
31. 31.
Toh, C.K.: Ad Hoc Mobile Wireless Networks: Protocols and Systems. Prentice Hall, Upper Saddle River (2002)Google Scholar
32. 32.
Wang, J.J., He, X.: Succinct strictly convex greedy drawing of 3-connected plane graphs. Theor. Comput. Sci. 532, 80–90 (2014)

## Authors and Affiliations

• Giordano Da Lozzo
• 1
• Anthony D’Angelo
• 2
• Fabrizio Frati
• 1
Email author
1. 1.Dipartimento di IngegneriaRoma Tre UniversityRomeItaly
2. 2.School of Computer ScienceCarleton UniversityOttawaCanada