Embedding-Preserving Rectangle Visibility Representations of Nonplanar Graphs

  • Therese Biedl
  • Giuseppe Liotta
  • Fabrizio Montecchiani


A (weak) rectangle visibility representation, or simply an RVR, of a graph consists of an assignment of axis-aligned rectangles to vertices such that for every edge there exists a horizontal or vertical line of sight between the rectangles assigned to its endpoints. Given a graph with a fixed embedding in the plane, we show that the problem of testing whether this graph has an embedding-preserving RVR can be solved in polynomial time for general embedded graphs and in linear time for 1-plane graphs, i.e., for embedded graphs having at most one crossing per edge. The linear time algorithm uses three forbidden configurations, which extend the set known for straight-line drawings of 1-plane graphs. The algorithm first checks for the presence of these forbidden configurations in the input graph, and then either an embedding-preserving RVR is computed (also in linear time) or a forbidden configuration is reported as a negative witness. Finally, we discuss extensions of our study to the case when the embedding is not fixed but the RVR can have at most one crossing per edge.


Visibility representations 1-Planarity Fixed embedding Forbidden configuration 

Mathematics Subject Classification

68U05 68R10 94C15 



We thank the anonymous referees of this paper for their valuable suggestions.


  1. 1.
    Alam, M.J., Brandenburg, F.J., Kobourov, S.G.: Straight-line grid drawings of 3-connected 1-planar graphs. In: Graph Drawing. Lecture Notes in Computer Science, vol. 8242, pp. 83–94. Springer, Cham (2013)Google Scholar
  2. 2.
    Auer, C., Brandenburg, F.J., Gleißner, A., Reislhuber, J.: 1-Planarity of graphs with a rotation system. J. Graph Algorithms Appl. 19(1), 67–86 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bekos, M.A., Didimo, W., Liotta, G., Mehrabi, S., Montecchiani, F.: On RAC drawings of 1-planar graphs. Theor. Comput. Sci. 689, 48–57 (2017)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Biedl, T.: Relating bends and size in orthogonal graph drawings. Inform. Process. Lett. 65(2), 111–115 (1998)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Biedl, T., Lubiw, A., Petrick, M., Spriggs, M.: Morphing orthogonal planar graph drawings. ACM Trans. Algorithms 9(4), Art. No. 29 (2013)Google Scholar
  6. 6.
    Bodendiek, R., Schumacher, H., Wagner, K.: Bemerkungen zu einem Sechsfarbenproblem von G. Ringel. Abhandlungen aus dem Mathematischen Seminar der Universitaet Hamburg 53(1), 41–52 (1983)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Brandenburg, F.J.: 1-Visibility representations of 1-planar graphs. J. Graph Algorithms Appl. 18(3), 421–438 (2014)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Brandenburg, F.J., Eppstein, D., Gleißner, A., Goodrich, M.T., Hanauer, K., Reislhuber, J.: On the density of maximal 1-planar graphs. In: Didimo, W., Patrignani, M. (eds.) Graph Drawing. Lecture Notes in Computer Science, vol. 7704, pp. 327–338. Springer, Cham (2013)Google Scholar
  9. 9.
    Brandenburg, F.J., Didimo, W., Evans, W.S., Kindermann, P., Liotta, G., Montecchiani, F.: Recognizing and drawing IC-planar graphs. Theor. Comput. Sci. 636, 1–16 (2016)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chen, Z.Z., Grigni, M., Papadimitriou, C.H.: Recognizing hole-free 4-map graphs in cubic time. Algorithmica 45(2), 227–262 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Cohen, M.B., Mądry, A., Sankowski, P., Vladu, A.: Negative-weight shortest paths and unit capacity minimum cost flow in \(\widetilde{O}(m^{10/7} \log {W})\) time (extended abstract). In: Klein, P.N. (ed.) Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17), pp. 752–771. SIAM, Philadelphia (2017)Google Scholar
  13. 13.
    Czap, J., Hudák, D.: On drawings and decompositions of 1-planar graphs. Electron. J. Comb. 20(2), Art. No. 54 (2013)Google Scholar
  14. 14.
    Dean, A.M., Evans, W., Gethner, E., Laison, J.D., Safari, M.A., Trotter, W.T.: Bar \(k\)-visibility graphs. J. Graph Algorithms Appl. 11(1), 45–59 (2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Upper Saddle River (1999)MATHGoogle Scholar
  16. 16.
    Di Giacomo, E., Didimo, W., Evans, W.S., Liotta, G., Meijer, H., Montecchiani, F., Wismath, S.K.: Ortho-polygon visibility representations of embedded graphs. Algorithmica (2017). doi: 10.1007/s00453-017-0324-2 MATHGoogle Scholar
  17. 17.
    Didimo, W., Liotta, G.: The crossing-angle resolution in graph drawing. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 167–184. Springer, New York (2013)CrossRefGoogle Scholar
  18. 18.
    Duchet, P., Hamidoune, Y., Vergnas, M.L., Meyniel, H.: Representing a planar graph by vertical lines joining different levels. Discrete Math. 46(3), 319–321 (1983)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. Discrete Appl. Math. 161(7–8), 961–969 (2013)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Evans, W., Kaufmann, M., Lenhart, W., Mchedlidze, T., Wismath, S.: Bar 1-visibility graphs and their relation to other nearly planar graphs. J. Graph Algorithms Appl. 18(5), 721–739 (2014)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 213–248. Springer, New York (2013)CrossRefGoogle Scholar
  22. 22.
    Fusy, É.: Transversal structures on triangulations: a combinatorial study and straight-line drawings. Discrete Math. 309(7), 1870–1894 (2009)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    He, X.: On finding the rectangular duals of planar triangular graphs. SIAM J. Comput. 22(6), 1218–1226 (1993)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Hong, S.H., Eades, P., Liotta, G., Poon, S.H.: Fáry’s theorem for 1-planar graphs. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) Computing and Combinatorics. Lecture Notes in Computer Science, vol. 7434, pp. 335–346. Springer, Berlin (2012)Google Scholar
  25. 25.
    Hutchinson, J.P., Shermer, T.C., Vince, A.: On representations of some thickness-two graphs. Comput. Geom. 13(3), 161–171 (1999)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Kant, G.: A more compact visibility representation. Int. J. Comput. Geom. Appl. 7(3), 197–210 (1997)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kant, G., Bodlaender, H.L.: Triangulating planar graphs while minimizing the maximum degree. Inf. Comput. 135(1), 1–14 (1997)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theor. Comput. Sci. 172(1–2), 175–193 (1997)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Kant, G., Liotta, G., Tamassia, R., Tollis, I.G.: Area requirement of visibility representations of trees. Inf. Process. Lett. 62(2), 81–88 (1997)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-planarity. Comput. Sci. Rev. doi: 10.1016/j.cosrev.2017.06.002
  31. 31.
    Korzhik, V.P.: Minimal non-1-planar graphs. Discrete Math. 308(7), 1319–1327 (2008)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Kynčl, J.: Enumeration of simple complete topological graphs. Eur. J. Comb. 30(7), 1676–1685 (2009)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Liotta, G., Montecchiani, F.: L-visibility drawings of IC-planar graphs. Inf. Process. Lett. 116(3), 217–222 (2016)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Madry, A.: Computing maximum flow with augmenting electrical flows. In: Dinur, I. (ed.) IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS’16), pp. 593–602. IEEE (2016)Google Scholar
  35. 35.
    Otten, R.H.J.M., Wijk, J.G.V.: Graph representations in interactive layout design. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCSS’78), pp. 914–918. IEEE (1978)Google Scholar
  36. 36.
    Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete Comput. Geom. 1(4), 343–353 (1986)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Shermer, T.C.: On rectangle visibility graphs. III. External visibility and complexity. In: Proceedings of the 8th Canadian Conference on Computational Geometry (CCCG’96), pp. 234–239. Carleton University Press, Ottawa (1996)Google Scholar
  39. 39.
    Streinu, I., Whitesides, S.: Rectangle visibility graphs: Characterization, construction, and compaction. In: Alt, H., Habib, M. (eds.) STACS 2003. Lecture Notes in Computer Science, vol. 2607, pp. 26–37. Springer, Berlin (2003)Google Scholar
  40. 40.
    Suzuki, Y.: Re-embeddings of maximum 1-planar graphs. SIAM J. Discrete Math. 24(4), 1527–1540 (2010)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar graphs. Discrete Comput. Geom. 1(4), 321–341 (1986)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Thomassen, C.: Plane representations of graphs. In: Bondy, J.A., Murty, U.S.R. (eds.) Progress in Graph Theory, pp. 43–69. Academic Press, New York (1984)Google Scholar
  44. 44.
    Thomassen, C.: Rectilinear drawings of graphs. J. Graph Theory 12(3), 335–341 (1988)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Ullman, J.D.: Computational Aspects of VLSI. Computer Science Press, Rockville (1984)MATHGoogle Scholar
  46. 46.
    Ungar, P.: On diagrams representing maps. J. Lond. Math. Soc. s1–28(3), 336–342 (1953)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Wismath, S.K.: Characterizing bar line-of-sight graphs. In: O’Rourke, J. (ed.) Proceedings of the 1st Annual Symposium on Computational Geometry (SoCG’85), pp. 147–152. ACM, New York (1985)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.David R. Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada
  2. 2.Dipartimento di IngegneriaUniversità degli Studi di PerugiaPerugiaItaly

Personalised recommendations