Skip to main content
Log in

On the Number of Maximum Empty Boxes Amidst n Points

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We revisit the following problem (along with its higher dimensional variant): Given a set S of n points inside an axis-parallel rectangle U in the plane, find a maximum-area axis-parallel sub-rectangle that is contained in U but contains no points of S.

  1. (I)

    We prove that the number of maximum-area empty rectangles amidst n points in the plane is \(O(n \log {n} \, 2^{\alpha (n)})\), where \(\alpha (n)\) is the extremely slowly growing inverse of Ackermann’s function. The previous best bound, \(O(n^2)\), is due to Naamad et al. (Discrete Appl Math 8(3):267–277, 1984).

  2. (II)

    For any \(d \ge 3\), we prove that the number of maximum-volume empty boxes amidst n points in \(\mathbb {R}^d\) is always \(O(n^d)\) and sometimes \(\Omega (n^{\lfloor d/2 \rfloor })\). This is the first superlinear lower bound derived for this problem.

  3. (III)

    We discuss some algorithmic aspects regarding the search for a maximum empty box in \(\mathbb {R}^3\). In particular, we present an algorithm that finds a \((1-\varepsilon )\)-approximation of the maximum empty box amidst n points in \(O(\varepsilon ^{-2} n^{5/3} \log ^2{n})\) time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. A weaker bound with \(b=3\) was inadvertently labeled as an improvement over this bound in [18].

References

  1. Agarwal, P.K., Sharir, M., Shor, P.: Sharp upper and lower bounds on the length of general Davenport–Schinzel sequences. J. Comb. Theory Ser. A 52(2), 228–274 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aggarwal, A., Klawe, M.: Applications of generalized matrix searching to geometric algorithms. Discrete Appl. Math. 27(1–2), 3–23 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aggarwal, A., Suri, S.: Fast algorithms for computing the largest empty rectangle. In: 3rd Annual Symposium on Computational Geometry (SCG’87), pp. 278–290. ACM, New York (1987)

  4. Aggarwal, A., Klawe, M.M., Moran, S., Shor, P., Wilber, R.: Geometric applications of a matrix-searching algorithm. Algorithmica 2(2), 195–208 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aistleitner, C., Hinrichs, A., Rudolf, D.: On the size of the largest empty box amidst a point set (2015). arXiv:1507.02067

  6. Atallah, M.J., Frederickson, G.N.: A note on finding a maximum empty rectangle. Discrete Appl. Math. 13(1), 87–91 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Augustine, J., Das, S., Maheshwari, A., Nandy, S., Roy, S., Sarvattomananda, S.: Querying for the largest empty geometric object in a desired location (2010). arXiv:1004.0558

  8. Backer, J., Keil, J.M.: The bichromatic rectangle problem in high dimensions. In: Proceedings of the 21st Canadian Conference on Computational Geometry (CCCG2009), pp. 157–160. Vancouver (2009)

  9. Backer, J., Keil, J.M.: The mono- and bichromatic empty rectangle and square problems in all dimensions. In: López-Ortiz, A. (ed.) LATIN 2010: Theoretical Informatics, pp. 14–25. Lecture Notes in Computer Science, vol. 6034. Springer, Berlin (2010)

  10. Boland, R.P., Urrutia, J.: Finding the largest axis aligned rectangle in a polygon in \(O(n \log {n})\) time. In: Proceedings of the 13st Canadian Conference on Computational Geometry (CCCG2001), pp. 41–44. Vancouver (2001)

  11. Braß, P., Rote, G., Swanepoel, K.J.: Triangles of extremal area or perimeter in a finite planar point set. Discrete Comput. Geom. 26(1), 51–58 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chazelle, B., Drysdale, R.L., Lee, D.T.: Computing the largest empty rectangle. SIAM J. Comput. 15(1), 300–315 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Datta, A., Soundaralakshmi, S.: An efficient algorithm for computing the maximum empty rectangle in three dimensions. Inform. Sci. 128(1–2), 43–65 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Davenport, H., Schinzel, A.: A combinatorial problem connected with differential equations. Am. J. Math. 87(3), 684–694 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dobkin, D., Suri, S.: Maintenance of geometric extrema. J. Assoc. Comput. Mach. 38(2), 275–298 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dumitrescu, A., Jiang, M.: On the largest empty axis-parallel box amidst \(n\) points. Algorithmica 66(2), 225–248 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dumitrescu, A., Jiang, M.: Maximal empty boxes amidst random points. Comb. Probab. Comput. 22(4), 477–498 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dumitrescu, A., Jiang, M.: Computational geometry column 60. ACM SIGACT News 45(4), 76–82 (2014)

    Article  MathSciNet  Google Scholar 

  19. Dumitrescu, A., Jiang, M.: Perfect vector sets, properly overlapping partitions, and largest empty box (2016). arXiv:1608.06874

  20. Edmonds, J., Gryz, J., Liang, D., Miller, R.J.: Mining for empty spaces in large data sets. Theor. Comput. Sci. 296(3), 435–452 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Erdős, P., Purdy, G.: Some extremal problems in geometry. J. Comb. Theory Ser. A 10, 246–252 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  22. Giannopoulos, P., Knauer, C., Wahlström, M., Werner, D.: Hardness of discrepancy computation and \(\varepsilon \)-net verification in high dimension. J. Complexity 28(2), 162–176 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 84–90 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hammersley, J.M.: Monte Carlo methods for solving multivariable problems. Ann. New York Acad. Sci. 86, 844–874 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hart, S., Sharir, M.: Nonlinearity of Davenport–Schinzel sequences and of generalized path compression schemes. Combinatorica 6(2), 151–177 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kaplan, H., Rubin, N., Sharir, M., Verbin, E.: Efficient colored orthogonal range counting. SIAM J. Comput. 38(3), 982–1011 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kaplan, H., Mozes, S., Nussbaum, Y., Sharir, M.: Submatrix maximum queries in Monge matrices and Monge partial matrices, and their applications. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 338–355. ACM, New York (2012)

  28. Matoušek, J.: Geometric Discrepancy: An Illustrated Guide. Algorithms and Combinatorics, vol. 18. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  29. Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer, Berlin (2002)

    Book  Google Scholar 

  30. Naamad, A., Lee, D.T., Hsu, W.-L.: On the maximum empty rectangle problem. Discrete Appl. Math. 8(3), 267–277 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nandy, S.C., Bhattacharya, B.B.: Maximal empty cuboids among points and blocks. Comput. Math. Appl. 36(3), 11–20 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Texts and Monographs in Computer Science. Springer, New York (1985)

    Book  MATH  Google Scholar 

  33. Rote, G., Tichy, R.F.: Quasi-Monte-Carlo methods and the dispersion of point sequences. Math. Comput. Modelling 23(8–9), 9–23 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sharir, M., Agarwal, P.K.: Davenport–Schinzel Sequences and Their Geometric Applications. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  35. van der Corput, J.G.: Verteilungsfunktionen. I. Proc. Nederl. Akad. Wetensch. 38, 813–821 (1935)

    MATH  Google Scholar 

  36. van der Corput, J.G.: Verteilungsfunktionen. II. Proc. Nederl. Akad. Wetensch. 38, 1058–1066 (1935)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Dumitrescu.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumitrescu, A., Jiang, M. On the Number of Maximum Empty Boxes Amidst n Points. Discrete Comput Geom 59, 742–756 (2018). https://doi.org/10.1007/s00454-017-9871-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-017-9871-1

Keywords

Navigation