Skip to main content
Log in

Realization Spaces of Arrangements of Convex Bodies

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We introduce combinatorial types of planar arrangements of convex bodies, extending order types of point sets to arrangements of convex bodies, and study their realization spaces. Our main results witness a trade-off between the combinatorial complexity of the bodies and the topological complexity of their realization space. First, we show that every combinatorial type is realizable and its realization space is contractible under mild assumptions. Second, we prove a universality theorem that says the restriction of the realization space to arrangements polygons with a bounded number of vertices can have the homotopy type of any primary semialgebraic set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Note that Mnev’s Theorem is more specific as it deals with stable equivalence.

  2. The definition of \(f_{ i}\) on \(\Theta (v)\) is irrelevant as long as \(f_{ i}\) is \(C^2\)-smooth, monotonic, symmetric about \(\theta \), and varies continuously with respect to V. A cubic spline would suffice for this.

  3. Here subscripts are indices over \(\mathbb {Z}_k\), so in particular \(\ell _k\) is the line spanning \(a_k^n\) and \(a_1^1\).

References

  1. Aichholzer, O., Miltzow, T., Pilz, A.: Extreme point and halving edge search in abstract order types. Comput. Geom. 46(8), 970–978 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.M.: Oriented Matroids. Encyclopedia of Mathematics and Its Applications, vol. 46, 2nd edn. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  3. Dhandapani, R., Goodman, J.E., Holmsen, A., Pollack, R.: Interval sequences and the combinatorial encoding of planar families of convex sets. Rev. Roum. Math. Pures Appl. 50(5–6), 537–553 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Dobbins, M.G., Holmsen, A., Hubard, A.: The Erdős–Szekeres problem for non-crossing convex sets. Mathematika 60(2), 463–484 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dobbins, M.G., Holmsen, A.F., Hubard, A.: Regular systems of paths and families of convex sets in convex position. Trans. Am. Math. Soc. 368(5), 3271–3303 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Felsner, S., Valtr, P.: Coding and counting arrangements of pseudolines. Discrete Comput. Geom. 46(3), 405–416 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Folkman, J., Lawrence, J.: Oriented matroids. J. Comb. Theory Ser. B 25(2), 199–236 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goodman, J.E.: Proof of a conjecture of Burr, Grünbaum, and Sloane. Discrete Math. 32(1), 27–35 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goodman, J.E., Pollack, R.: On the combinatorial classification of nondegenerate configurations in the plane. J. Comb. Theory Ser. A 29(2), 220–235 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goodman, J.E., Pollack, R.: Semispaces of configurations, cell complexes of arrangements. J. Comb. Theory Ser. A 37(3), 257–293 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goodman, J.E., Pollack, R.: Upper bounds for configurations and polytopes in \(\mathbb{R}^d\). Discrete Comput. Geom. 1(3), 219–227 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goodman, J.E., Pollack, R.: The combinatorial encoding of disjoint convex sets in the plane. Combinatorica 28(1), 69–81 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics. Encyclopedia of Mathematics and Its Applications, vol. 61. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  14. Grünbaum, B.: Arrangements and spreads. In: CBMS Regional Conference Series in Mathematics, vol. 10. American Mathematical Society, Providence, RI (1972)

  15. Habert, L., Pocchiola, M.: Computing pseudotriangulations via branched coverings. Discrete Comput. Geom. 48(3), 518–679 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Habert, L., Pocchiola, M.: LR characterization of chirotopes of finite planar families of pairwise disjoint convex bodies. Discrete Comput. Geom. 50(3), 552–648 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hubard, A.: Erdős–Szekeres para cuerpos convexos. Bachelor’s Thesis, UNAM (2005)

  18. Hubard, A., Montejano, L., Mora, E., Suk, A.: Order types of convex bodies. Order 28(1), 121–130 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kapovich, M., Millson, J.J.: Universality theorems for configuration spaces of planar linkages. Topology 41(6), 1051–1107 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Knuth, D.E.: Axioms and Hulls. Lecture Notes in Computer Science, vol. 606. Springer, Berlin (1992)

  21. Levi, F.: Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade. Ber. Math. Phys. Kl. Sächs. Akad. Wiss. 78, 256–267 (1926)

    MATH  Google Scholar 

  22. Mnev, N.E.: Varieties of combinatorial types of projective configurations and convex polyhedra. Dokl. Akad. Nauk SSSR 283(6), 1312–1314 (1985) (in Russian)

  23. Mnev, N.E.: The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. In: Viro, O.Ya., Vershik, A.M. (eds.) Topology and Geometry—Rohlin Seminar. Lecture Notes in Mathematics, vol. 1346, pp. 527–543. Springer, Berlin (1988)

  24. Novick, M.: Allowable interval sequences and line transversals in the plane. Discrete Comput. Geom. 48(4), 1058–1073 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Novick, M.: Allowable interval sequences and separating convex sets in the plane. Discrete Comput. Geom. 47(2), 378–392 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pach, J., Tóth, G.: Families of convex sets not representable by points. In: Bhattacharya, B.B., Sur-Kolay, S., Nandy, S.C., Bagchi, A. (eds.) Algorithms, Architectures and Information Systems Security. Statistical Science and Interdisciplinary Research, vol. 3, pp. 43–53. World Scientific, Hackensack (2009)

    Chapter  Google Scholar 

  27. Padrol, A., Theran, L.: Delaunay triangulations with disconnected realization spaces. In: 30th Annual Symposium on Computational Geometry (SoCG’14), pp. 163–170. ACM, New York (2014)

  28. Richter-Gebert, J.: Realization Spaces of Polytopes. Lecture Notes in Mathematics, vol. 1643. Springer, Berlin (1996)

  29. Ringel, G.: Teilungen der Ebene durch Geraden oder topologische Geraden. Math. Z. 64, 79–102 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shor, P.W.: Stretchability of pseudolines is NP-hard. In: Gritzmann, P., Sturmfels, B. (eds.) Applied Geometry and Discrete Mathematics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 531–554. American Mathematical Society, Providence, RI (1991)

    Google Scholar 

  31. Tsukamoto, Y.: New examples of oriented matroids with disconnected realization spaces. Discrete Comput. Geom. 49(2), 287–295 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vakil, R.: Murphy’s law in algebraic geometry: badly-behaved deformation spaces. Invent. Math. 164(3), 569–590 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

M. G. Dobbins was supported by National Research Foundation Grant NRF-2011-0030044 (SRC-GAIA) funded by the government of South Korea. A. Holmsen was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2010-0021048). A. Hubard was supported by Fondation Sciences Mathématiques de Paris and by the Advanced Grant of the European Research Council GUDHI (Geometric Understanding in Higher Dimensions).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gene Dobbins.

Additional information

Editor in Charge: Günter M. Ziegler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobbins, M.G., Holmsen, A. & Hubard, A. Realization Spaces of Arrangements of Convex Bodies. Discrete Comput Geom 58, 1–29 (2017). https://doi.org/10.1007/s00454-017-9869-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-017-9869-8

Keywords

Mathematics Subject Classification

Navigation