Bredon, G.E.: Equivariant Cohomology Theories. Lecture Notes in Mathematics, vol. 34. Springer, Berlin (1967)
Brown, E.H.: Finite computability of Postnikov complexes. Ann. Math. 65, 1–20 (1957)
MathSciNet
Article
MATH
Google Scholar
Čadek, M., Krčál, M., Vokřínek, L.: Algorithmic solvability of the lifting-extension problem (extended version). http://arxiv.org/abs/1307.6444 (2013)
Čadek, M., Krčál, M., Matoušek, J., Sergeraert, F., Vokřínek, L., Wagner, U.: Computing all maps into a sphere. J. ACM 61(17), 1–44 (2014)
MathSciNet
MATH
Google Scholar
Čadek, M., Krčál, M., Matoušek, J., Vokřínek, L., Wagner, U.: Polynomial-time computation of homotopy groups and Postnikov systems in fixed dimension. SIAM J. Comput. 43, 1728–1780 (2014)
MathSciNet
Article
MATH
Google Scholar
Čadek, M., Krčál, M., Matoušek, J., Vokřínek, L., Wagner, U.: Extendability of continuous maps is undecidable. Discrete Comput. Geom. 51, 24–66 (2014)
MathSciNet
Article
MATH
Google Scholar
Crabb, M., James, I.: Fibrewise Homotopy Theory. Springer Monographs in Mathematics. Springer, London (1998)
Dwyer, W.G., Spalinski, J.: Homotopy theories and model categories. In: James, I.M. (ed.) Handbook of Algebraic Topology, pp. 73–126. Elsevier, Amsterdam (1995)
Chapter
Google Scholar
Eilenberg, S., MacLane, S.: On the groups \(H(\Pi,n)\), II. Methods of computation. Ann. Math. 60, 49–139 (1954)
MathSciNet
Article
MATH
Google Scholar
Filakovský, M.: Effective chain complexes for twisted products. Arch. Math. (Brno) 48, 313–322 (2012)
MathSciNet
Article
MATH
Google Scholar
Filakovský, M.: Algorithmic construction of the Postnikov tower for diagrams of simplicial sets. Thesis. https://is.muni.cz/th/211334/prif_d/THESIS_Marek_Filakovsky.pdf
Filakovský, M., Vokřínek, L.: Are two given maps homotopic? An algorithmic viewpoint. http://arxiv.org/abs/1312.2337 (2013)
Friedman, G.: An elementary illustrated introduction to simplicial sets. Rocky Mt. J. Math. 42, 353–423 (2012)
MathSciNet
Article
MATH
Google Scholar
Hirschhorn, P.S.: Model Categories and Their Localizations. Mathematical Surveys and Monographs, vol. 99. American Mathematical Society, Providence, RI (2003)
Matoušek, J.: Using the Borsuk–Ulam Theorem. Springer, Berlin (2003)
MATH
Google Scholar
Matoušek, J., Tancer, M., Wagner, U.: Hardness of embedding simplicial complexes in \({\mathbb{R}}^{d}\). J. Eur. Math. Soc. 13, 259–295 (2011)
MathSciNet
Article
MATH
Google Scholar
May, J.P.: Simplicial Objects in Algebraic Topology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1992)
McClendon, J.F.: Obstruction theory in fiber spaces. Math. Z. 120, 1–17 (1971)
MathSciNet
Article
MATH
Google Scholar
Robinson, C.A.: Moore-Postnikov systems for non-simple fibrations. Ill. J. Math. 16, 234–242 (1972)
MathSciNet
MATH
Google Scholar
Rubio, J., Sergeraert, F.: Constructive homological algebra and applications. http://arxiv.org/abs/1208.3816 (2012) (Written in 2006 for a MAP Summer School at the University of Genova)
Shih, W.: Homologie des espaces fibres. Publ. Math. l’IHÉS 13, 93–176 (1962)
MATH
Google Scholar
Stasheff, J.: \(H\)-Spaces From a Homotopy Point of View. Lecture Notes in Mathematics, vol. 161. Springer, Berlin (1970)
Vokřínek, L.: Computing the abelian heap of unpointed stable homotopy classes of maps. Arch. Math. (Brno) 49, 359–368 (2013)
MathSciNet
Article
MATH
Google Scholar
Vokřínek, L.: Constructing homotopy equivalences of chain complexes of free \({\mathbb{Z}}G\)-modules. Contemp. Math. 617, 279–296 (2014)
MathSciNet
Article
MATH
Google Scholar
Vokřínek, L.: Heaps and unpointed stable homotopy theory. Arch. Math. (Brno) 50, 323–332 (2014)
MathSciNet
Article
MATH
Google Scholar
Vokřínek, L.: Decidability of the extension problem for maps into odd-dimensional spheres. Discrete Comput. Geom. 57(1), 1–11 (2017)
MathSciNet
Article
MATH
Google Scholar
Weber, C.: Plongements de polyedres dans le domaine metastable. Comment. Math. Helv. 42, 1–27 (1967)
MathSciNet
Article
MATH
Google Scholar