Discrete & Computational Geometry

, Volume 57, Issue 2, pp 357–370 | Cite as

Invariant Measure of Rotational Beta Expansion and Tarski’s Plank Problem



We study the invariant measures of a piecewise expanding map in \(\mathbb {R}^m\) defined by an expanding similitude modulo a lattice. Using the result of Bang (Proc Am Math Soc 2:990–993, 1951) on the plank problem of Tarski, we show that when the similarity ratio is at least \(m+1\), the map has an absolutely continuous invariant measure equivalent to the m-dimensional Lebesgue measure, under some mild assumption on the fundamental domain. Applying the method to the case \(m=2\), we obtain an alternative proof of the result in Akiyama and Caalim (J Math Soc Japan 69:1–19, 2016) together with some improvement.


Beta expansion Tarski’s plank problem Invariant measures 


  1. 1.
    Akiyama, S., Caalim, J.: Rotational beta expansion: ergodicity and soficness. J. Math. Soc. Japan 69, 1–19 (2016)MathSciNetGoogle Scholar
  2. 2.
    Akiyama, S., Pethő, A.: On canonical number systems. Theor. Comput. Sci. 270(1–2), 921–933 (2002)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Akiyama, S., Scheicher, K.: Symmetric shift radix systems and finite expansions. Math. Pannon 18(1), 101–124 (2007)MathSciNetMATHGoogle Scholar
  4. 4.
    Ball, K.: The plank problem for symmetric bodies. Invent. Math. 104(3), 535–543 (1991)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bang, T.: A solution of the “plank problem”. Proc. Am. Math. Soc. 2, 990–993 (1951)MathSciNetMATHGoogle Scholar
  6. 6.
    Buzzi, J., Keller, G.: Zeta functions and transfer operators for multidimensional piecewise affine and expanding maps. Ergodic Theory Dyn. Syst. 21(3), 689–716 (2001)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Dajani, K., de Vries, M.: Invariant densities for random \(\beta \)-expansions. J. Eur. Math. Soc. 9(1), 157–176 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gilbert, W.J.: Complex numbers with three radix representations. Can. J. Math. 34, 1335–1348 (1982)CrossRefMATHGoogle Scholar
  9. 9.
    Góra, P.: Invariant densities for generalized \(\beta \)-maps. Ergodic Theory Dyn. Syst. 27(5), 1583–1598 (2007)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Góra, P., Boyarsky, A.: Absolutely continuous invariant measures for piecewise expanding \(C^2\) transformation in \({{\bf R}}^N\). Isr. J. Math. 67(3), 272–286 (1989)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Ito, Sh, Sadahiro, T.: Beta-expansions with negative bases. Integers 9(A22), 239–259 (2009)MathSciNetMATHGoogle Scholar
  12. 12.
    Ito, Sh, Takahashi, Y.: Markov subshifts and realization of \(\beta \)-expansions. J. Math. Soc. Japan 26(1), 33–55 (1974)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kalle, C.: Isomorphisms between positive and negative \(\beta \)-transformations. Ergodic Theory Dyn. Syst. 34(1), 153–170 (2014)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kátai, I., Szabó, J.: Canonical number systems for complex integers. Acta Sci. Math. (Szeged) 37, 255–260 (1975)MathSciNetMATHGoogle Scholar
  15. 15.
    Keller, G.: Ergodicité et mesures invariantes pour les transformations dilatantes par morceaux d’une région bornée du plan, C. C.R. Acad. Sci. Paris Sér. A-B 289(12), A625–A627 (1979)MATHGoogle Scholar
  16. 16.
    Keller, G.: Generalized bounded variation and applications to piecewise monotonic transformations. Z. Wahrscheinlichkeitstheor. Verw. Geb. 69(3), 461–478 (1985)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kempton, T.: On the invariant density of the random \(\beta \)-transformation. Acta Math. Hung. 142(2), 403–419 (2014)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kenyon, R.: The construction of self-similar tilings. Geom. Funct. Anal. 6, 471–488 (1996)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kenyon, R., Solomyak, B.: On the characterization of expansion maps for self-affine tilings. Discrete Comput. Geom. 43(3), 577–593 (2010)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Komornik, V., Loreti, P.: Expansions in complex bases. Can. Math. Bull. 50(3), 399–408 (2007)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Lagarias, J.C., Wang, Y.: Integral self-affine tiles in \({\mathbb{R}}^n\) I. Standard and nonstandard digit sets. J. Lond. Math. Soc. 54(2), 161–179 (1996)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Li, T.Y., Yorke, J.A.: Ergodic transformations from an interval into itself. Trans. Am. Math. Soc. 235, 183–192 (1978)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Liao, L., Steiner, W.: Dynamical properties of the negative beta-transformation. Ergodic Theory Dyn. Syst. 32(5), 1673–1690 (2012)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Parry, W.: On the \(\beta \)-expansions of real numbers. Acta Math. Acad. Sci. Hung. 11, 401–416 (1960)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Parry, W.: Representations for real numbers. Acta Math. Acad. Sci. Hung. 15, 95–105 (1964)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Parry, W.: The Lorenz attractor and a related population model, Ergodic theory. In: Proceedings Conference Mathematics Forschungsinstitut Oberwolfach, 1978. Lecture Notes in Mathematics, vol. 729, pp. 169–187. Springer, Berlin (1979)Google Scholar
  27. 27.
    Rényi, A.: Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung. 8, 477–493 (1957)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Safer, T.: Polygonal radix representations of complex numbers. Theor. Comput. Sci. 210(1), 159–171 (1999)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Saussol, B.: Absolutely continuous invariant measures for multidimensional expanding maps. Isr. J. Math. 116, 223–248 (2000)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Scheicher, K., Thuswaldner, J.M.: Canonical number systems, counting automata and fractals. Math. Proc. Camb. Philos. Soc. 133(1), 163–182 (2002)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Tarski, A.: Further remarks about degree of equivalence on polygons (English translation by I. Wirszup), Collected Papers, vol. 1, pp. 597–611. Birkhäuser, Basel, Boston, Stuttgart (1986)Google Scholar
  32. 32.
    Tsujii, M.: Absolutely continuous invariant measures for piecewise real-analytic expanding maps on the plane. Commun. Math. Phys. 208(3), 605–622 (2000)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Tsujii, M.: Absolutely continuous invariant measures for expanding piecewise linear maps. Invent. Math. 143(2), 349–373 (2001)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Vince, A.: Self-replicating tiles and their boundary. Discrete Comput. Geom. 21, 463–476 (1999)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Mathematics & Center for Integrated Research in Fundamental Science and EngineeringUniversity of TsukubaTsukubaJapan
  2. 2.Institute of MathematicsUniversity of the Philippines DilimanQuezon CityPhilippines

Personalised recommendations