Discrete & Computational Geometry

, Volume 57, Issue 1, pp 104–124 | Cite as

The Number of Holes in the Union of Translates of a Convex Set in Three Dimensions

  • Boris Aronov
  • Otfried Cheong
  • Michael Gene Dobbins
  • Xavier Goaoc
Article

Abstract

We show that the union of n translates of a convex body in \(\mathbb {R}^3\) can have \(\varTheta (n^3)\) holes in the worst case, where a hole in a set X is a connected component of \(\mathbb {R}^3 \setminus X\). This refutes a 20-year-old conjecture. As a consequence, we also obtain improved lower bounds on the complexity of motion planning problems and of Voronoi diagrams with convex distance functions.

Keywords

Union complexity Convex sets Motion planning 

References

  1. 1.
    Agarwal, P.K., Pach, J., Sharir, M.: State of the union (of geometric objects). In: Proceedings of the Joint Summer Research Conference on Discrete and Computational Geometry: 20 Years Later. Contemporary Mathematics, vol. 452, pp. 9–48. AMS, Providence, RI (2008)Google Scholar
  2. 2.
    Agarwal, P.K., Har-Peled, S., Kaplan, H., Sharir, M.: Union of random Minkowski sums and network vulnerability analysis. Discrete Comput. Geom. 52(3), 551–582 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Aronov, B., Sharir, M.: On translational motion planning of a convex polyhedron in 3-space. SIAM J. Comput. 26(6), 1785–1803 (1997)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Aronov, B., Cheong, O., Dobbins, M.G., Goaoc, X.: The number of holes in the union of translates of a convex set in three dimensions. In: 32nd International Symposium on Computational Geometry (SoCG 2016), Leibniz International Proceedings in Informatics (LIPIcs), vol. 51, pp. 10:1–10:16 (2016)Google Scholar
  5. 5.
    Aurenhammer, F.: Voronoi diagrams: a survey of a fundamental geometric data structure. ACM Comput. Surv. 23, 345–405 (1991)CrossRefGoogle Scholar
  6. 6.
    Borsuk, K.: On the imbedding of systems of compacta in simplicial complexes. Fundam. Math. 35, 217–234 (1948)MathSciNetMATHGoogle Scholar
  7. 7.
    Clarkson, K.L., Varadarajan, K.: Improved approximation algorithms for geometric set cover. Discrete Comput. Geom. 37(1), 43–58 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Efrat, A., Sharir, M.: On the complexity of the union of fat convex objects in the plane. Discrete Comput. Geom. 23(2), 171–189 (2000)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Fortune, S.: Voronoi diagrams and Delaunay triangulations. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, Chapter 23, 2nd edn, pp. 513–528. CRC Press, Boca Raton (2004)Google Scholar
  10. 10.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  11. 11.
    Icking, C., Klein, R., Lé, N.M., Ma, L.: Convex distance functions in 3-space are different. Fundam. Inform. 22, 331–352 (1995)MathSciNetMATHGoogle Scholar
  12. 12.
    Kedem, K., Livne, R., Pach, J., Sharir, M.: On the union of Jordan regions and collision-free translational motion amidst polygonal ostacles. Discrete Comput. Geom. 1(1), 59–71 (1986)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Koltun, V., Sharir, M.: Polyhedral Voronoi diagrams of polyhedra in three dimensions. Discrete Comput. Geom. 31, 83–124 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kovalev, M.D.: Svoistvo vypuklykh mnozhestv i ego prilozhenie (A property of convex sets and its application). Mat. Zametki 44, 89–99 (1988)MathSciNetGoogle Scholar
  15. 15.
    Mitchell, J.S.B., O’Rourke, J.: Computational geometry column. Int. J. Comput. Geom. Appl. 11(05), 573–582 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, Menlo Park (1984)MATHGoogle Scholar
  17. 17.
    Pach, J., Tardos, G.: On the boundary complexity of the union of fat triangles. SIAM J. Comput. 31(6), 1745–1760 (2002)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Sharir, M.: Algorithmic motion planning. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, Chapter 47, 2nd edn, pp. 1037–1064. CRC Press, Boca Raton (2004)Google Scholar
  19. 19.
    Sharir, M., Agarwal, P.K.: Davenport–Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York (2010)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Boris Aronov
    • 1
  • Otfried Cheong
    • 2
  • Michael Gene Dobbins
    • 3
  • Xavier Goaoc
    • 4
  1. 1.Department of Computer Science and Engineering, Tandon School of EngineeringNew York UniversityBrooklynUSA
  2. 2.KAISTDaejeonSouth Korea
  3. 3.Department of Mathematical SciencesBinghamton UniversityBinghamtonUSA
  4. 4.Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE, UPEMMarne-la-ValléeFrance

Personalised recommendations