Polytopes of Eigensteps of Finite Equal Norm Tight Frames


Hilbert space frames generalize orthonormal bases to allow redundancy in representations of vectors while keeping good reconstruction properties. A frame comes with an associated frame operator encoding essential properties of the frame. We study a polytope that arises in an algorithm for constructing all finite frames with given lengths of frame vectors and spectrum of the frame operator, which is a Gelfand–Tsetlin polytope. For equal norm tight frames, we give a non-redundant description of the polytope in terms of equations and inequalities. From this we obtain the dimension and number of facets of the polytope. While studying the polytope, we find two affine isomorphisms and show how they relate to operations on the underlying frames.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Cahill, J., Fickus, M., Mixon, D.G., Poteet, M.J., Strawn, N.K.: Constructing finite frames of a given spectrum and set of lengths. Appl. Comput. Harmon. Anal. 35(1), 52–73 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Cahill, J., Mixon, D.G., Strawn, N.: Connectivity and Irreducibility of Algebraic Varieties of Finite Unit Norm Tight Frames. Preprint (2016). arXiv:1311.4748v2

  3. 3.

    Casazza, P.G., Fickus, M., Mixon, D., Peterson, J., Smalyanau, I.: Every Hilbert space frame has a Naimark complement. J. Math. Anal. Appl. 406(1), 111–119 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Casazza, P.G., Kutyniok, G.: Finite Frames. Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2013)

    Google Scholar 

  5. 5.

    De Loera, J.A., McAllister, T.B.: Vertices of Gelfand–Tsetlin polytopes. Discrete Comput. Geom. 32(4), 459–470 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Dykema, K., Strawn, N.: Manifold structure of spaces of spherical tight frames. Int. J. Pure. Appl. Math 28(2), 217–256 (2006)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Fickus, M., Mixon, D.G., Poteet, M.J., Strawn, N.: Constructing all self-adjoint matrices with prescribed spectrum and diagonal. Adv. Comput. Math. 39(3–4), 585–609 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Gelfand, I.M., Tsetlin, M.L.: Finite-dimensional representations of the group of unimodular matrices. Doklady Akad. Nauk SSSR 71, 825–828 (1950)

    MathSciNet  Google Scholar 

  9. 9.

    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Tim Haga.

Additional information

Editor in Charge: Kenneth Clarkson

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haga, T., Pegel, C. Polytopes of Eigensteps of Finite Equal Norm Tight Frames. Discrete Comput Geom 56, 727–742 (2016). https://doi.org/10.1007/s00454-016-9799-x

Download citation


  • Hilbert space frames
  • Polytopes
  • Convex geometry
  • Combinatorics

Mathematics Subject Classification

  • 52B05
  • 42C15