Discrete & Computational Geometry

, Volume 56, Issue 1, pp 93–113 | Cite as

Intrinsic Volumes of Random Cubical Complexes

Article

Abstract

Intrinsic volumes, which generalize both Euler characteristic and Lebesgue volume, are important properties of d-dimensional sets. A random cubical complex is a union of unit cubes, each with vertices on a regular cubic lattice, constructed according to some probability model. We analyze and give exact polynomial formulae, dependent on a probability, for the expected value and variance of the intrinsic volumes of several models of random cubical complexes. We then prove a central limit theorem for these intrinsic volumes. For our primary model, we also prove an interleaving theorem for the zeros of the expected-value polynomials. The intrinsic volumes of cubical complexes are useful for understanding the shape of random d-dimensional sets and for characterizing noise in applications.

Keywords

Intrinsic volume Cubical complex Random complex Euler characteristic 

Mathematics Subject Classification

60D05 52C99 

References

  1. 1.
    Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer, New York (2007)MATHGoogle Scholar
  2. 2.
    Aizenman, M., Chayes, J.T., Chayes, L., Frhlich, J., Russo, L.: On a sharp transition from area law to a perimeter law in a system of random surfaces. Commun. Math. Phys. 92, 19–69 (1983)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Baryshnikov, Y., Ghrist, R., Wright, M.: Hadwiger’s theorem for definable functions. Adv. Math. 245, 573–586 (2013)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Cohen, D., Costa, A., Farber, M., Kappeler, T.: Topology of random 2-complexes. Discrete Comput. Geom. 47(1), 117–149 (2012)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Curry, J., Ghrist, R., Robinson, M.: Euler calculus and its applications to signals and sensing. In: Proceedings of Symposia in Applied Mathematics. AMS, Boston (2012)Google Scholar
  6. 6.
    Gray, S.B.: Local properties of binary images in two dimensions. IEEE Trans. Comput. 20(5), 551–561 (1971)CrossRefMATHGoogle Scholar
  7. 7.
    Grimmett, G.R., Holroyd, A.E.: Plaquettes, spheres, and entanglement. Electron. J. Probab. 15, 1415–1428 (2010)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Guderlei, R., Klenk, S., Mayer, J., Schmidt, V., Spodarev, E.: Algorithms for the computation of the Minkowski functionals of deterministic and random polyconvex sets. Image Vis. Comput. 25(4), 464–474 (2007)CrossRefGoogle Scholar
  9. 9.
    Kahle, M.: Random geometric complexes. Discrete Comput. Geom. 45(3), 553–573 (2011)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Kahle, M.: Topology of Random Simplicial Complexes: A Survey. AMS Contemporary Volumes in Mathematics. AMS, Boston (2014)Google Scholar
  11. 11.
    Kahle, M., Meckes, E.: Limit theorems for Betti numbers of random simplicial complexes. Homol. Homot. Appl. 15(1), 343–374 (2013)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Klain, D.A., Rota, G.-C.: Introduction to Geometric Probability. Cambridge University Press, New York (1997)MATHGoogle Scholar
  13. 13.
    Li, X., Mendonça, P.R.S, Bhotika, R.: Texture analysis using Minkowski functionals. In: Proceedings of SPIE Medical Imaging 2012: Image Processing, vol. 8314 (2012)Google Scholar
  14. 14.
    Linial, N., Meshulam, R.: Homological connectivity of random 2-complexes. Combinatorica 26, 475–487 (2006)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Meshulam, R., Wallach, N.: Homological connectivity of random \(k\)-dimensional complexes. Random Struct. Algorithms 34(3), 408–417 (2000)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Richardson, E., Werman, M.: Efficient classification using the Euler characteristic. Pattern Recognit. Lett. 49, 99–106 (2014)CrossRefGoogle Scholar
  17. 17.
    Ross, N.: Fundamentals of Stein’s method. Probab. Surv. 8, 210–293 (2011)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Schladitz, K., Ohser, J., Nagel, W.: Measurement of intrinsic volumes of sets observed on lattices. In: 13th International Conference on Discrete Geometry for Computer Imagery, pp. 247–258 (2006)Google Scholar
  19. 19.
    Schanuel, S.H.: What is the Length of a Potato? Lecture Notes in Mathematics. Springer, Berlin (1986)MATHGoogle Scholar
  20. 20.
    Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin (2009)MATHGoogle Scholar
  21. 21.
    Svane, A.M.: Estimation of intrinsic volumes from digital grey-scale images. J. Math. Imaging Vis. 49(2), 352–376 (2014)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    van den Dries, L.: Tame Topology and O-Minimal Structures. Cambridge University Press, Cambridge (1998)CrossRefMATHGoogle Scholar
  23. 23.
    Wright, M.L.: Hadwiger integration of random fields. Topol. Methods Nonlinear Anal. 45(1), 117–128 (2015)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.The Hebrew University of JerusalemJerusalemIsrael
  2. 2.St. Olaf CollegeNorthfieldUSA

Personalised recommendations