Beck, J.: On the lattice property of the plane and some problems of Dirac, Motzkin, and Erdős in combinatorial geometry. Combinatorica 3, 281–297 (1983)
MathSciNet
Article
MATH
Google Scholar
Bollobás, B.: Graph Theory: An Introductory Course. Springer, New York (1979)
Book
MATH
Google Scholar
Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry. Springer, Berlin (2013)
MATH
Google Scholar
Elekes, G., Rónyai, L.: A combinatorial problem on polynomials and rational functions. J. Comb. Theory, Ser. A 89, 1–20 (2000)
MathSciNet
Article
MATH
Google Scholar
Elekes, G., Szabó, E.: How to find groups? (And how to use them in Erdős geometry?). Combinatorica 32, 537–571 (2012)
MathSciNet
Article
MATH
Google Scholar
Elekes, G., Szabó, E.: On triple lines and cubic curves: the Orchard Problem revisited. http://arxiv.org/abs/1302.5777
Erdős, P.: On sets of distances of \(n\) points. Am. Math. Mon. 53, 248–250 (1946)
MathSciNet
Article
MATH
Google Scholar
Erdős, P.: On some problems of elementary and combinatorial geometry. Ann. Mat. Pura Appl. 103, 99–108 (1975)
MathSciNet
Article
MATH
Google Scholar
Erdős, P.: On some metric and combinatorial geometric problems. Discrete Math. 60, 147–153 (1986)
MathSciNet
Article
MATH
Google Scholar
Erdős, P., Purdy, G.: Some extremal problems in geometry IV. In: Proceedings of 7th Southeastern Conference on Combinatorics, Graph Theory, and Computing, pp. 307–322 (1976)
Fox, J., Pach, J., Sheffer, A., Suk, A., Zahl, J.: A semi-algebraic version of Zarankiewicz’s problem. J. Eur. Math. Soc. (to appear)
Green, B., Tao, T.: On sets defining few ordinary lines. Discrete Comput. Geom. 50, 409–468 (2013)
MathSciNet
Article
MATH
Google Scholar
Guth, L., Katz, N.H.: On the Erdős distinct distances problem in the plane. Ann. Math. 181, 155–190 (2015)
MathSciNet
Article
MATH
Google Scholar
Hanson, B., Lund, B., Roche-Newton, O.: On distinct perpendicular bisectors and pinned distances in finite fields. Finite Fields Appl. 37, 240–264 (2016)
MathSciNet
Article
MATH
Google Scholar
Katz, N.H., Tardos, G.: A new entropy inequality for the Erdős distance problem, Towards a Theory of Geometric Graphs (J. Pach, ed.). Contemp. Math. 342, 119–126 (2004)
MathSciNet
Article
MATH
Google Scholar
Pach, J., Tardos, G.: Isosceles triangles determined by a planar point set. Graphs Comb. 18, 769–779 (2002)
MathSciNet
Article
MATH
Google Scholar
Pach, J., Zeeuw, F. de.: Distinct distances on algebraic curves in the plane. Comb. Probab. Comput. (to appear)
Raz, O.E., Roche-Newton, O., Sharir, M.: Sets with few distinct distances do not have heavy lines. Discrete Math. 338, 1484–1492 (2015)
MathSciNet
Article
MATH
Google Scholar
Raz, O.E., Sharir, M., Solymosi, J.: Polynomials vanishing on grids: the Elekes-Rónyai problem revisited. Am. J. Math. (to appear)
Raz, O.E., Sharir, M., de Zeeuw, F.: Polynomials vanishing on Cartesian products: the Elekes-Szabó theorem revisited. Duke Math. J. (to appear)
Sheffer, A.: Few distinct distances implies many points on a line. Blog post (2014)
Sheffer, A., Zahl, J., de Zeeuw, F.: Few distinct distances implies no heavy lines or circles. Combinatorica. (to appear)
Solymosi, J., Stojaković, M.: Many collinear \(k\)-tuples with no \(k+ 1\) collinear points. Discrete Comput. Geom. 50, 811–820 (2013)
MathSciNet
Article
MATH
Google Scholar
Solymosi, J., Tao, T.: An incidence theorem in higher dimensions. Discrete Comput. Geom. 48, 255–280 (2012)
MathSciNet
Article
MATH
Google Scholar
Szemerédi, E., Trotter, W.: Extremal problems in discrete geometry. Combinatorica 3, 381–392 (1983)
MathSciNet
Article
MATH
Google Scholar
Tardos, G.: On distinct sums and distinct distances. Adv. Math. 180, 275–289 (2003)
MathSciNet
Article
MATH
Google Scholar
Whitney, H.: Elementary structure of real algebraic varieties. Ann. Math. 66, 545–556 (1957)
MathSciNet
Article
MATH
Google Scholar