Discrete & Computational Geometry

, Volume 56, Issue 1, pp 43–92 | Cite as

Nonobtuse Triangulations of PSLGs

  • Christopher J. Bishop


We show that any planar straight line graph with n vertices has a conforming triangulation by \(O(n^{2.5})\) nonobtuse triangles (all angles \(\le 90^\circ \)), answering the question of whether any polynomial bound exists. A nonobtuse triangulation is Delaunay, so this result also improves a previous \(O(n^3)\) bound of  Edelsbrunner and Tan for conforming Delaunay triangulations of PSLGs. In the special case that the PSLG is the triangulation of a simple polygon, we will show that only \(O(n^2)\) triangles are needed, improving an \(O(n^4)\) bound of Bern and Eppstein. We also show that for any \(\varepsilon >0\), every PSLG has a conforming triangulation with \(O(n^2 /\varepsilon ^2)\) elements and with all angles bounded above by \(90^\circ + \varepsilon \). This improves a result of S. Mitchell when \(\varepsilon = \frac{3}{8} \pi =67.5^\circ \) and Tan when \(\varepsilon = \frac{7}{30} \pi = 42^\circ \).


nonobtuse triangulations Delaunay triangulations Gabriel condition Thick/Thin decomposition 

Mathematics Subject Classification

Primary 68U05 Secondary 52B55 68Q25 



Many thanks to Joe Mitchell and Estie Arkin for numerous conversations about computational geometry in general and the results of this paper in particular. Also thanks to two anonymous referees for many helpful comments and suggestions on two earlier versions of the paper; their efforts greatly improved the presentation in this version. The author was partially supported by NSF Grant DMS 13-05233.


  1. 1.
    Abedi, R., Chung, S.H., Erickson, J., Fan, Y., Garland, M., Guoy, D., Haber, R., Sullivan, J.M., Thite, S., Zhou, Y.: Spacetime meshing with adaptive refinement and coarsening. In: SCG’04: Proceedings of the Twentieth Annual Symposium on Computational Geometry, pp. 300–309. ACM, New York (2004)Google Scholar
  2. 2.
    Baker, B.S., Grosse, E., Rafferty, C.S.: Nonobtuse triangulation of polygons. Discrete Comput. Geom. 3(2), 147–168 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Barth, T.J., Sethian, J.A.: Numerical schemes for the Hamilton–Jacobi and level set equations on triangulated domains. J. Comput. Phys. 145(1), 1–40 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bern, M., Eppstein, D.: Polynomial-size nonobtuse triangulation of polygons. Int. J. Comput. Geom. Appl. 2(3), 241–255, 1992. Selected papers from the 7th Annual Symposium on Computational Geometry I, Conway (1991)Google Scholar
  5. 5.
    Bern, M., Eppstein, D.: Computing in Euclidean Geometry. Lecture Notes Series in Computer Science, pp. 23–90. World Science Publications, River Edge (1992)CrossRefGoogle Scholar
  6. 6.
    Bern, M., Gilbert, J.R.: Drawing the planar dual. Inf. Process. Lett. 43(1), 7–13 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bern, M., Eppstein, D., Gilbert, J.: Provably good mesh generation. J. Comput. System Sci., 48(3), 384–409 (1994). In: 31st Annual Symposium on Foundations of Computer Science (FOCS), St. Louis (1990)Google Scholar
  8. 8.
    Bern, M., Dobkin, D., Eppstein, D.: Triangulating polygons without large angles. Int. J. Comput. Geom. Appl. 5(1–2), 171–192 (1995). In: Eighth Annual ACM Symposium on Computational Geometry, Berlin (1992)Google Scholar
  9. 9.
    Bern, M., Mitchell, S., Ruppert, J.: Linear-size nonobtuse triangulation of polygons. Discrete Comput. Geom. 14(4), 411–428, 1995. In: ACM Symposium on Computational Geometry, Stony Brook (1994)Google Scholar
  10. 10.
    Bern, M., Plassmann, P.: Mesh generation. In: Handbook of Computational Geometry, pp. 291–332. North-Holland, Amsterdam (2000)Google Scholar
  11. 11.
    Bishop, C.J.: Quadrilateral meshes for PSLGs. Discrete Comput. Geom. (2016). doi: 10.1007/s00454-016-9771-9
  12. 12.
    Bobenko, A.I., Springborn, B.A.: A discrete Laplace–Beltrami operator for simplicial surfaces. Discrete Comput. Geom. 38(4), 740–756 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Boman, E.G., Hendrickson, B., Vavasis, S.: Solving elliptic finite element systems in near-linear time with support preconditioners. SIAM J. Numer. Anal. 46(6), 3264–3284 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Brandts, J., Korotov, S., Křížek, M., Šolc, J.: On nonobtuse simplicial partitions. SIAM Rev. 51(2), 317–335 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Burago, YuD, Zalgaller, V.A.: Polyhedral embedding of a net. Vestn. Leningrad. Univ. 15(7), 66–80 (1960)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Cassidy, C., Lord, G.: A square acutely triangulated. J. Recreational Math., 13(4), 263–268 (1980–1981)Google Scholar
  17. 17.
    Ciarlet, P.G., Raviart, P.A.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Eng. 2, 17–31 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Edelsbrunner, H.: Triangulations and meshes in computational geometry. In: Acta Numerica, 2000. Acta Numerica, vol. 9, pp. 133–213. Cambridge University Press, Cambridge (2000)Google Scholar
  19. 19.
    Edelsbrunner, H., Tan, T.S.: An upper bound for conforming Delaunay triangulations. Discrete Comput. Geom. 10(2), 197–213 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Erten, H., Üngör, A.: Computing acute and non-obtuse triangulations. In: CCCG 2007, Ottawa (2007)Google Scholar
  21. 21.
    Erten, H., Üngör, A.: Quality triangulations with locally optimal Steiner points. SIAM J. Sci. Comput. 31(3), 2103–2130 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Gabriel, K., Sokal, R.: A new statistical approach to geographic variation analysis. Syst. Zool. 18, 259–278 (1969)CrossRefGoogle Scholar
  23. 23.
    Gardner, M.: Mathematical games: a fifth collection of brain-teasers. Sci. Am. 202(2), 150–154 (1960)CrossRefGoogle Scholar
  24. 24.
    Gardner, M.: Mathematical games: the games and puzzles of Lewis Carroll, and the answers to February’s problems. Sci. Am. 202(3), 172–182 (1960)CrossRefGoogle Scholar
  25. 25.
    Gerver, J.L.: The dissection of a polygon into nearly equilateral triangles. Geom. Dedicata 16(1), 93–106 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Goldberg, M., Manheimer, W.: Elementary problems and solutions: solutions: E1406. Am. Math. Mon. 67(9), 923 (1960)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Hangan, T., Itoh, J., Zamfirescu, T.: Acute triangulations. Bull. Math. Soc. Sci. Math. Roum., Nouv. Ser. 43(91), 279–285 (2000)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Itoh, J.: Acute triangulations of sphere and icosahedron. In: Differential Geometry, Sakado. Josai Mathematical Monographs, vol. 3, pp. 53–62. Josai University, Sakado (2001)Google Scholar
  29. 29.
    Itoh, J., Yuan, L.: Acute triangulations of flat tori. Eur. J. Comb. 30(1), 1–4 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Itoh, J., Zamfirescu, T.: Acute triangulations of the regular icosahedral surface. Discrete Comput. Geom. 31(2), 197–206 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Itoh, J., Zamfirescu, T.: Acute triangulations of the regular dodecahedral surface. Eur. J. Comb. 28(4), 1072–1086 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Kopczynski, E., Pak, I., Przytycki, P.: Acute triangulations of polyhedra and \(R^n\). Combinatorica 32(1), 85–110 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Korotov, S., Stańdo, J.: Nonstandard nonobtuse refinements of planar triangulations. In: Conjugate Gradient Algorithms and Finite Element Methods. Scientific Computing, pp. 149–160. Springer, Berlin (2004)Google Scholar
  34. 34.
    Křížek, M.: There is no face-to-face partition of \({ R}^5\) into acute simplices. Discrete Comput. Geom. 36(2), 381–390 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Li, J.Y.S., Zhang, H.: Nonobtuse remeshing and mesh decimation. In: SGP’06: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, pp. 235–238. Eurographics Association, Aire-la-Ville (2006)Google Scholar
  36. 36.
    Maehara, H.: Acute triangulations of polygons. Eur. J. Comb. 23(1), 45–55 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Melissaratos, E.A., Souvaine, D.L.: Coping with inconsistencies: a new approach to produce quality triangulations of polygonal domains with holes. In: SCG’92: Proceedings of the Eighth Annual Symposium on Computational Geometry, pp. 202–211. ACM, New York (1992)Google Scholar
  38. 38.
    Mitchell, S.A.: Refining a triangulation of a planar straight-line graph to eliminate large angles. In: 34th Annual Symposium on Foundations of Computer Science, Palo Alto, pp. 583–591. IEEE Computer Society Press, Los Alamitos (1993)Google Scholar
  39. 39.
    Nackman, L.R., Srinivasan, V.: Point placement algorithms for Delaunay triangulation of polygonal domains. Algorithmica 12(1), 1–17 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Ruppert, J.: A new and simple algorithm for quality \(2\)-dimensional mesh generation. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, Austin, pp. 83–92. ACM, New York (1993)Google Scholar
  41. 41.
    Saalfeld, A.: Delaunay edge refinements. In: Proceedings of the Third Canadian Conference on Computational Geoemtry, pp. 33–36 (1991)Google Scholar
  42. 42.
    Salzberg, S., Delcher, A.L., Heath, D., Kasif, S.: Best-case results for nearest-neighbor learning. IEEE Trans. Pattern Anal. Mach. Intell. 17(6), 599–608 (1995)CrossRefGoogle Scholar
  43. 43.
    Saraf, S.: Acute and nonobtuse triangulations of polyhedral surfaces. Eur. J. Comb. 30(4), 833–840 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. 22(1–3), 21–74 (2002). In: 16th ACM Symposium on Computational Geometry, Hong Kong (2000)Google Scholar
  46. 46.
    Spielman, D.A., Teng, S.-H.: Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (electronic), pp. 81–90. ACM, New York (2004)Google Scholar
  47. 47.
    Tan, T.-S.: An optimal bound for high-quality conforming triangulations. Discrete Comput. Geom. 15(2), 169–193 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Thite, S.: Adaptive spacetime meshing for discontinuous Galerkin methods. Comput. Geom. 42(1), 20–44 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Üngör, A., Sheffer, A.: Pitching tents in space-time: mesh generation for discontinuous Galerkin method. Int. J. Found. Comput. Sci. 13(2), 201–221 (2002). Volume and surface triangulationsGoogle Scholar
  50. 50.
    VanderZee, E., Hirani, A.N., Guoy, D., Ramos, E.: Well-centered planar triangulation—an iterative approach. In: Brewer, M.L., Marcum, D. (eds.) Proceedings of the 16th International Meshing Roundtable, Seattle, 14–17 Oct 2007, pp. 121–138Google Scholar
  51. 51.
    Vanderzee, E., Hirani, A.N., Zharnitsky, V., Guoy, D.: A dihedral acute triangulation of the cube. Computational Geometry: Theory and Applications (Accepted, and available online), 2009. Also available as a preprint at arXiv as arXiv:0905.3715v4 [cs.CG]
  52. 52.
    VanderZee, E., Hirani, A.N., Guoy, D., Ramos, E.: Well-centered triangulation. SIAM J. Sci. Comput. 31(6), 4497–4523 (2010). Also available as preprint arXiv:0802.2108v3 [cs.CG]
  53. 53.
    Vanselow, R.: About Delaunay triangulations and discrete maximum principles for the linear conforming FEM applied to the Poisson equation. Appl. Math. 46(1), 13–28 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    Vavasis, S.A.: Stable finite elements for problems with wild coefficients. SIAM J. Numer. Anal. 33(3), 890–916 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    Yuan, L.: Acute triangulations of polygons. Discrete Comput. Geom. 34(4), 697–706 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  56. 56.
    Yuan, L., Zamfirescu, C.T.: Acute triangulations of doubly covered convex quadrilaterals. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10(3, bis), 933–938 (2007)zbMATHMathSciNetGoogle Scholar
  57. 57.
    Yuan, L., Zamfirescu, T.: Acute triangulations of flat Möbius strips. Discrete Comput. Geom. 37(4), 671–676 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  58. 58.
    Zamfirescu, C.: Acute triangulations of the double triangle. Bull. Math. Soc. Sci. Math. Roum., Nouv. Ser. 47(95), 189–193 (2004)zbMATHMathSciNetGoogle Scholar
  59. 59.
    Zamfirescu, C.T.: Survey of two-dimensional acute triangulations. Discrete Math. 313, 35–49 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  60. 60.
    Zamfirescu, T.: Acute triangulations: a short survey. In: Proceedings of the VI Annual Conference of the Romanian Society of Mathematical Sciences (Romanian), Sibiu, 2002, vol. I, pp. 10–18. Societatea de Ştiinţe Matematice din România, Bucharest (2003)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Mathematics DepartmentStony Brook UniversityStony BrookUSA

Personalised recommendations