Skip to main content
Log in

Configurations of Non-crossing Rays and Related Problems

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Let S be a set of n points in the plane and let R be a set of n pairwise non-crossing rays, each with an apex at a different point of S. Two sets of non-crossing rays \(R_1\) and \(R_2\) are considered to be different if the cyclic permutations they induce at infinity are different. In this paper, we study the number r(S) of different configurations of non-crossing rays that can be obtained from a given point set S. We define the extremal values

$$\begin{aligned} \overline{r}(n) = \max _{|S|=n} r(S)\quad \text { and } \quad \underline{r}(n) = \min _{|S|=n} r(S), \end{aligned}$$

and we prove that \( \underline{r}(n) = \Omega ^* (2^n)\), \( \underline{r}(n) = O^* (3.516^n)\) and that \( \overline{r}(n) = \Theta ^* (4^n)\). We also consider the number of different ways, \(r^\gamma (S)\), in which a point set S can be connected to a simple curve \(\gamma \) using a set of non-crossing straight-line segments. We define and study

$$\begin{aligned} \overline{r}^{\gamma }(n) = \max _{|S|=n} r^{\gamma }(S) \quad \text {and } \quad \underline{r}^{\gamma }(n) = \min _{|S|=n} r^{\gamma }(S), \end{aligned}$$

and we find these values for the following cases: When \(\gamma \) is a line and the points of S are in one of the halfplanes defined by \(\gamma \), then \( \underline{r}^\gamma (n) = \Theta ^* (2^n)\) and \( \overline{r}^\gamma (n) = \Theta ^* (4^n)\). When \(\gamma \) is a convex curve enclosing S, then \(\overline{r}^\gamma (n) = O^* (16^n)\). If all the points of S belong to a convex closed curve \(\gamma \), then \(\underline{r}^{\gamma }(n) = \overline{r}^{\gamma }(n) = \Theta ^* (5^n)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Aichholzer, O., Hackl, T., Huemer, C., Hurtado, F., Krasser, H., Vogtenhuber, B.: On the number of plane graphs. Graphs Comb. 23(1), 67–84 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aichholzer, O., Hurtado, F., Noy, M.: A lower bound on the number of triangulations of planar point sets. Comput. Geom. Theory Appl. 29(2), 135–145 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aichholzer, O., Orden, D., Santos, F., Speckmann, B.: On the number of pseudo-triangulations of certain point sets. J. Comb. Theory Ser. A 115, 254–278 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ajtai, M., Chvátal, V., Newborn, M., Szemerédi, E.: Crossing-free subgraphs. Ann. Discrete Math. 12, 9–12 (1982)

    MathSciNet  MATH  Google Scholar 

  5. Aloupis, G., Cardinal, J., Collette, S., Demaine, E.D., Demaine, M., Dulieu, M., Fabila-Monroy, R., Hart, V., Hurtado, F., Langerman, S., Saumell, M., Seara, C., Taslakian, P.: Non-crossing matchings of points with geometric objects. Comput. Geom. Theory Appl. 45(1), 78–92 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, New York (2005)

    MATH  Google Scholar 

  7. Brualdi, R.A.: Introductory Combinatorics, 3rd edn. Prentice Hall, New Jersey (1999)

    MATH  Google Scholar 

  8. Buchin, K., Schulz, A.: On the number of spanning trees a planar graph can have. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part 1. LNCS, vol. 6346, pp. 110–121. Springer, Heidelberg (2010)

    Google Scholar 

  9. Cabello, S., Cardinal, J., Langerman, S.: The clique problem in ray intersection graphs. Discrete Comput. Geom. 50(3), 771–783 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dumitrescu, A., Schulz, A., Sheffer, A., Tóth, C.D.: Bounds on the maximum multiplicity of some common geometric graphs. SIAM J. Discrete Math. 27(2), 802–826 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Felsner, S., Mertzios, G.B., Musta, I.: On the recognition of four-directional orthogonal ray graphs. In: Chatterje, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 373–384. Springer, Berlin (2013)

    Google Scholar 

  12. Flajolet, P., Noy, M.: Analytic combinatorics of non-crossing configurations. Discrete Math. 204, 203–229 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. García, A., Hurtado, F., Tejel, J., Urrutia, J.: On the number of non-crossing rays configurations. In: Proceedings of XII Spanish Meeting on Computational Geometry, pp. 129–134 (2007)

  14. García, A., Noy, M., Tejel, J.: Lower bounds on the number of crossing-free subgraphs of \(K_n\). Comput. Geom. Theory Appl. 16, 211–221 (2000)

    Article  MATH  Google Scholar 

  15. García, A., Tejel, J.: The order of points on the second convex hull of a simple polygon. Discrete Comput. Geom. 14, 185–205 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Greene, D.H., Knuth, D.E.: Mathematics for the Analysis of Algorithms. Progress in Computer Science, vol. 1. Birkäuser, Boston (1981)

    MATH  Google Scholar 

  17. Gross, J.L.: Combinatorial Methods with Computer Applications. Chapman & Hall/CRC, Boca Raton (2008)

    MATH  Google Scholar 

  18. Hoffmann, M., Sharir, M., Sheffer, A., Tóth, CsD: Counting plane graphs: flippability and its applications. In: Dehene, F., Iacono, J., Sack, J.R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 524–535. Springer, Berlin (2011)

    Google Scholar 

  19. Kirkpatrick, D., Yang, B., Zilles, S.: On the barrier-resilience of arrangements of ray-sensors. In: Proceedings of the XV Spanish Meeting on Computational Geometry, Seville, June, pp. 35–38 (2013)

  20. Odlyzko, A.M.: Asymptotic enumeration methods. In: Graham, R.L., et al. (eds.) Handbook of Combinatorics, vol. 2, pp. 1063–1229. Elsevier, Amsterdam (1995)

    Google Scholar 

  21. Santos, F., Seidel, R.: A better upper bound on the number of triangulations of a planar point set. J. Comb. Theory Ser. A 102, 186–193 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sharir, M., Sheffer, A.: Counting triangulations of planar point sets. Electron. J. Comb. 18, P70 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Sharir, M., Welzl, E.: On the number of crossing-free matchings (cycles, and partitions). SIAM J. Comput. 36(3), 695–720 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sheffer, A.: Numbers of Plane Graphs, http://www.cs.tau.ac.il/sheffera/counting/PlaneGraphs.html

  25. Shrestha, A., Tayu, Sa, Ueno, S.: On orthogonal ray graphs. Discrete Appl. Math. 158(15), 1650–1659 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stanley, R.P.: Enumerative Combinatorics, vols. 1–2. Cambridge University Press, Cambridge (1997–1999)

  27. Wilf, H.S.: Generating Functionology. Academic Press, Boston (1994)

    Google Scholar 

Download references

Acknowledgments

A. García and J. Tejel: Partially supported by Projects Gob. Arag. E58 (ESF), MICINN MTM2009-07242, MINECO MTM2012-30951 and ESF EUROCORES programme EuroGIGA, CRP ComPoSe: MICINN Project EUI-EURC-2011-4306. F. Hurtado: Partially supported by Projects Gen. Cat DGR2009SGR1040, MICINN MTM2009-07242, MINECO MTM2012-30951 and ESF EUROCORES programme EuroGIGA, CRP ComPoSe: MICINN Project EUI-EURC-2011-4306. J. Urrutia: Partially supported by Projects MTM2006-03909 (Spain) and SEP-CONACYT of Mexico, Project 80268.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Urrutia.

Additional information

Editor in Charge: János Pach

A preliminary version of this work was presented at the XII Spanish Meeting on Computational Geometry [13]. This full version improves on many of the results presented there.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, A., Hurtado, F., Tejel, J. et al. Configurations of Non-crossing Rays and Related Problems. Discrete Comput Geom 55, 522–549 (2016). https://doi.org/10.1007/s00454-016-9765-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-016-9765-7

Keywords

Mathematics Subject Classification

Navigation