Skip to main content
Log in

Two-Orbit Convex Polytopes and Tilings

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We classify the convex polytopes whose symmetry groups have two orbits on the flags. These exist only in two or three dimensions, and the only ones whose combinatorial automorphism group is also two-orbit are the cuboctahedron, the icosidodecahedron, and their duals. The combinatorially regular two-orbit convex polytopes are certain 2n-gons for each \(n \ge 2\). We also classify the face-to-face tilings of Euclidean space by convex polytopes whose symmetry groups have two flag orbits. There are finitely many families, tiling one, two, or three dimensions. The only such tilings which are also combinatorially two-orbit are the trihexagonal plane tiling, the rhombille plane tiling, the tetrahedral–octahedral honeycomb, and the rhombic dodecahedral honeycomb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Blind, R.: Konvexe polytope mit regulären facetten im \(\mathbb{R}^n\, (n\ge 4)\). In: Tölke, J., Wills, J. (eds.) Contributions to Geometry: Proceedings of the Geometry Symposium Held in Siegen, 1978, pp. 248–254 (1979)

  2. Blind, G., Blind, R.: The semiregular polytopes. Comment. Math. Helv. 66(1), 150–154 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brückner, M.: Über die gleicheckig-gleichflächigen, diskontinuierlichen und nichtkonvexen Polyeder. Die Kaiserl. Leop. Carol. Deutsche Akademie der Naturforscher (1906)

  4. Conway, J.H., Burgiel, H., Goodman-Strauss, C.: The Symmetries of Things. AK Peters, Wellesley (2008)

    MATH  Google Scholar 

  5. Coxeter, H.S.M.: Regular and semi-regular polytopes. I. Math. Z. 46(1), 380–407 (1940)

    Article  MathSciNet  Google Scholar 

  6. Coxeter, H.S.M.: Regular and semi-regular polytopes. III. Math. Z. 200(1), 3–45 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coxeter, H.S.M.: Regular Polytopes, 3rd edn. Dover Publications Inc, New York (1973)

    Google Scholar 

  8. Coxeter, H.S.M., Longuet-Higgins, M.S., Miller, J.: Uniform polyhedra. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 246(916), 401–450 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cunningham, G., del Río-Francos, M., Hubard, I., Toledo, M.: Symmetry type graphs of polytopes and maniplexes. Ann. Comb. 19(2), 243–268 (2015)

    Article  MathSciNet  Google Scholar 

  10. Delgado Friedrichs, O., O’Keeffe, M., Yaghi, O.M.: Three-periodic nets and tilings: regular and quasiregular nets. Acta Crystallogr. Sect. A 59(1), 22–27 (2002)

    Article  MathSciNet  Google Scholar 

  11. Fejes Tóth, L.: Regular Figures. International Series of Monographs on Pure and Applied Mathematics, vol. 48. Pergamon Press, New York (1964)

    MATH  Google Scholar 

  12. Gévay, G.: On perfect 4-polytopes. Beitr. Algebra Geom. 43(1), 243–259 (2002)

    MATH  Google Scholar 

  13. Gosset, T.: On the regular and semi-regular figures in space of n dimensions. Messenger Math. 29, 43–48 (1900)

    Google Scholar 

  14. Graver, J.E., Watkins, M.E.: Locally finite, planar, edge-transitive graphs. Mem. Am. Math. Soc. 126, 601 (1997)

    MathSciNet  Google Scholar 

  15. Grünbaum, B.: Convex Polytopes. Wiley, New York (1967)

    MATH  Google Scholar 

  16. Grünbaum, B.: Uniform tilings of 3-space. Geombinatorics 4(2), 49–56 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Grünbaum, B., Shephard, G.C.: Tilings and Patterns. W.H. Freeman & Company, New York (1986)

    Google Scholar 

  18. Grünbaum, B., Shephard, G.C.: Edge-transitive planar graphs. J. Graph Theory 11(2), 141–155 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Helfand, I.: Constructions of \(k\)-orbit abstract polytopes. Ph.D. Thesis, Northeastern University Boston, Boston (2013). http://hdl.handle.net/2047/d20003089

  20. Hubard, I.: Two-orbit polyhedra from groups. Eur. J. Comb. 31(3), 943–960 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hubard, I., Schulte, E.: Two-orbit polytopes (in preparation)

  22. McMullen, P.: On the combinatorial structure of convex polytopes. Ph.D. Thesis, University of Birmingham, Birmingham (1968)

  23. McMullen, P., Schulte, E.: Abstract Regular Polytopes. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  24. Monson, B., Schulte, E.: Semiregular polytopes and amalgamated C-groups. Adv. Math. 229(5), 2767–2791 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Orbanić, A., Pellicer, D., Weiss, A.I.: Map operations and \(k\)-orbit maps. J. Comb. Theory Ser. A 117(4), 411–429 (2010)

    Article  MATH  Google Scholar 

  26. Pellicer, D.: Developments and open problems on chiral polytopes. Ars Math. Contemp. 5(2), 333–354 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Robertson, S.A.: Polytopes and Symmetry. London Mathematical Society Lecture Note Series, vol. 90. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  28. Schulte, E., Weiss, A.I.: Chiral polytopes. Applied Geometry and Discrete Mathematics (The Victor Klee Festschrift). DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 493–516. American Mathematical Society, Providence, RI (1991)

    Google Scholar 

  29. Wenninger, M.J.: Polyhedron Models. Cambridge University Press, Cambridge (1974)

    MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank his advisor Egon Schulte for guidance, assistance, and providing the original problem, Peter McMullen for suggested improvements, and the reviewers for very thoughtful, thorough, and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Matteo.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matteo, N. Two-Orbit Convex Polytopes and Tilings. Discrete Comput Geom 55, 296–313 (2016). https://doi.org/10.1007/s00454-015-9754-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-015-9754-2

Keywords

Mathematics Subject Classification

Navigation