Abstract
We classify the convex polytopes whose symmetry groups have two orbits on the flags. These exist only in two or three dimensions, and the only ones whose combinatorial automorphism group is also two-orbit are the cuboctahedron, the icosidodecahedron, and their duals. The combinatorially regular two-orbit convex polytopes are certain 2n-gons for each \(n \ge 2\). We also classify the face-to-face tilings of Euclidean space by convex polytopes whose symmetry groups have two flag orbits. There are finitely many families, tiling one, two, or three dimensions. The only such tilings which are also combinatorially two-orbit are the trihexagonal plane tiling, the rhombille plane tiling, the tetrahedral–octahedral honeycomb, and the rhombic dodecahedral honeycomb.
Similar content being viewed by others
References
Blind, R.: Konvexe polytope mit regulären facetten im \(\mathbb{R}^n\, (n\ge 4)\). In: Tölke, J., Wills, J. (eds.) Contributions to Geometry: Proceedings of the Geometry Symposium Held in Siegen, 1978, pp. 248–254 (1979)
Blind, G., Blind, R.: The semiregular polytopes. Comment. Math. Helv. 66(1), 150–154 (1991)
Brückner, M.: Über die gleicheckig-gleichflächigen, diskontinuierlichen und nichtkonvexen Polyeder. Die Kaiserl. Leop. Carol. Deutsche Akademie der Naturforscher (1906)
Conway, J.H., Burgiel, H., Goodman-Strauss, C.: The Symmetries of Things. AK Peters, Wellesley (2008)
Coxeter, H.S.M.: Regular and semi-regular polytopes. I. Math. Z. 46(1), 380–407 (1940)
Coxeter, H.S.M.: Regular and semi-regular polytopes. III. Math. Z. 200(1), 3–45 (1988)
Coxeter, H.S.M.: Regular Polytopes, 3rd edn. Dover Publications Inc, New York (1973)
Coxeter, H.S.M., Longuet-Higgins, M.S., Miller, J.: Uniform polyhedra. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 246(916), 401–450 (1954)
Cunningham, G., del Río-Francos, M., Hubard, I., Toledo, M.: Symmetry type graphs of polytopes and maniplexes. Ann. Comb. 19(2), 243–268 (2015)
Delgado Friedrichs, O., O’Keeffe, M., Yaghi, O.M.: Three-periodic nets and tilings: regular and quasiregular nets. Acta Crystallogr. Sect. A 59(1), 22–27 (2002)
Fejes Tóth, L.: Regular Figures. International Series of Monographs on Pure and Applied Mathematics, vol. 48. Pergamon Press, New York (1964)
Gévay, G.: On perfect 4-polytopes. Beitr. Algebra Geom. 43(1), 243–259 (2002)
Gosset, T.: On the regular and semi-regular figures in space of n dimensions. Messenger Math. 29, 43–48 (1900)
Graver, J.E., Watkins, M.E.: Locally finite, planar, edge-transitive graphs. Mem. Am. Math. Soc. 126, 601 (1997)
Grünbaum, B.: Convex Polytopes. Wiley, New York (1967)
Grünbaum, B.: Uniform tilings of 3-space. Geombinatorics 4(2), 49–56 (1994)
Grünbaum, B., Shephard, G.C.: Tilings and Patterns. W.H. Freeman & Company, New York (1986)
Grünbaum, B., Shephard, G.C.: Edge-transitive planar graphs. J. Graph Theory 11(2), 141–155 (1987)
Helfand, I.: Constructions of \(k\)-orbit abstract polytopes. Ph.D. Thesis, Northeastern University Boston, Boston (2013). http://hdl.handle.net/2047/d20003089
Hubard, I.: Two-orbit polyhedra from groups. Eur. J. Comb. 31(3), 943–960 (2010)
Hubard, I., Schulte, E.: Two-orbit polytopes (in preparation)
McMullen, P.: On the combinatorial structure of convex polytopes. Ph.D. Thesis, University of Birmingham, Birmingham (1968)
McMullen, P., Schulte, E.: Abstract Regular Polytopes. Cambridge University Press, Cambridge (2002)
Monson, B., Schulte, E.: Semiregular polytopes and amalgamated C-groups. Adv. Math. 229(5), 2767–2791 (2012)
Orbanić, A., Pellicer, D., Weiss, A.I.: Map operations and \(k\)-orbit maps. J. Comb. Theory Ser. A 117(4), 411–429 (2010)
Pellicer, D.: Developments and open problems on chiral polytopes. Ars Math. Contemp. 5(2), 333–354 (2012)
Robertson, S.A.: Polytopes and Symmetry. London Mathematical Society Lecture Note Series, vol. 90. Cambridge University Press, Cambridge (1984)
Schulte, E., Weiss, A.I.: Chiral polytopes. Applied Geometry and Discrete Mathematics (The Victor Klee Festschrift). DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 493–516. American Mathematical Society, Providence, RI (1991)
Wenninger, M.J.: Polyhedron Models. Cambridge University Press, Cambridge (1974)
Acknowledgments
The author would like to thank his advisor Egon Schulte for guidance, assistance, and providing the original problem, Peter McMullen for suggested improvements, and the reviewers for very thoughtful, thorough, and helpful suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor in Charge: János Pach
Rights and permissions
About this article
Cite this article
Matteo, N. Two-Orbit Convex Polytopes and Tilings. Discrete Comput Geom 55, 296–313 (2016). https://doi.org/10.1007/s00454-015-9754-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-015-9754-2