Abstract
A geometric 4-configuration is a collection of points and straight lines with the property that every point lies on exactly four lines in the collection and every line passes through exactly four points in the collection. This paper describes a method for constructing a large number of new infinite families of rotationally symmetric geometric 4-configurations which are movable; that is, there is at least one continuous parameter which preserves the symmetry of the configuration. In fact, the configurations in this paper have 2q continuous parameters for any integer \(q \ge 2\); previously the known classes of movable 4-configurations had only one or two degrees of freedom. The construction is extended to produce movable 4-configurations with dihedral symmetry. The paper ends with a number of open questions.
Similar content being viewed by others
References
Barthel, G., Hirzebruch, F., Höfer, T.: Geradenkonfigurationen und Algebraische Flächen. Aspects of Mathematics, D4. Friedr. Vieweg & Sohn, Braunschweig (1987)
Berardinelli, A., Berman, L.W.: Systematic celestial configurations. Ars Math. Contemp. 7(2), 361–377 (2014)
Berman, L.W.: A characterization of astral \((n_4)\) configurations. Discrete Comput. Geom. 26(4), 603–612 (2001)
Berman, L.W.: Movable \((n_4)\) configurations. Electron. J. Comb. 13(1), Research Paper 104, 30 (2006)
Berman, L.W.: A new class of movable \((n_4)\) configurations. Ars Math. Contemp. 1(1), 44–50 (2008)
Berman, L.W.: Geometric constructions for 3-configurations with non-trivial geometric symmetry. Electron. J. Comb. 20(3), Paper 9, 29 (2013)
Berman, L.W., Faudree, J.R.: Highly incident configurations with chiral symmetry. Discrete Comput. Geom. 49(3), 671–694 (2013)
Boben, M., Pisanski, T.: Polycyclic configurations. Eur. J. Comb. 24(4), 431–457 (2003)
Bokowski, J., Grünbaum, B., Schewe, L.: Topological configurations \((n_4)\) exist for all \(n\ge 17\). Eur. J. Comb. 30(8), 1778–1785 (2009)
Bokowski, J., Pilaud, V.: Enumerating topological \((n_k)\)-configurations. Comput. Geom. 47(2, part A), 175–186 (2014)
Bokowski, J., Schewe, L.: There are no realizable \(15_4\)- and \(16_4\)-configurations. Rev. Roum. Math. Pures Appl. 50(5–6), 483–493 (2005)
Bokowski, J., Schewe, L.: On the finite set of missing geometric configurations \((n_4)\). Comput. Geom. 46(5), 532–540 (2013)
Coxeter, H.S.M.: Self-dual configurations and regular graphs. Bull. Am. Math. Soc. 56, 413–455 (1950)
Gévay, G.: Constructions for large spatial point-line \((n_k)\) configurations. Ars Math. Contemp. 7(1), 175–199 (2014)
Gross, J.L., Tucker, T.W.: Topological Graph Theory. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1987)
Grünbaum, B.: Which \((n_4)\) configurations exist? Geombinatorics 9(4), 164–169 (2000)
Grünbaum, B.: Connected \((n_4)\) configurations exist for almost all \(n\)—an update. Geombinatorics 12(1), 15–23 (2002)
Grünbaum, B.: Connected \((n_4)\) configurations exist for almost all \(n\)—second update. Geombinatorics 16(2), 254–261 (2006)
Grünbaum, B.: Musings on an example of Danzer’s. Eur. J. Comb. 29(8), 1910–1918 (2008)
Grünbaum, B.: A catalogue of simplicial arrangements in the real projective plane. Ars Math. Contemp. 2(1), 1–25 (2009)
Grünbaum, B.: Configurations of Points and Lines, Graduate Studies in Mathematics, vol. 103. American Mathematical Society, Providence (2009)
Grünbaum, B., Rigby, J.F.: The real configuration \((214)\). J. Lond. Math. Soc. (2) 41(2), 336–346 (1990)
Pisanski, T., Servatius, B.: Configurations from a Graphical Viewpoint. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser, Boston (2013)
Zagier, D.: Life and work of Friedrich Hirzebruch. Jahresber. Dtsch. Math.-Ver. 117(2), 93–132 (2015)
Acknowledgments
Leah Wrenn Berman thanks Jürgen Bokowski, at whose Workshop on Configurations the first ladder configuration was found. L. Berman’s research supported by a Grant from the Simons Foundation (#209161 to L. Berman); T. Pisanski’s research supported in part by the ARSS of Slovenia, Research Grants P1-0294, P1-0297 and N1-0011:GReGAS, and the European Science Foundation.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor in Charge: János Pach
Rights and permissions
About this article
Cite this article
Berman, L.W., Faudree, J.R. & Pisanski, T. Polycyclic Movable 4-Configurations are Plentiful. Discrete Comput Geom 55, 688–714 (2016). https://doi.org/10.1007/s00454-015-9749-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-015-9749-z
Keywords
- Geometric configurations
- Movable configurations
- Reduced Levi graph
- Crossing spans lemma
- Extended crossing spans lemma