Skip to main content
Log in

Optimal Packings of Congruent Circles on a Square Flat Torus

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We consider packings of congruent circles on a square flat torus, i.e., periodic (w.r.t. a square lattice) planar circle packings, with the maximal circle radius. This problem is interesting due to a practical reason—the problem of “super resolution of images.” We have found optimal arrangements for \(N=6\), 7 and 8 circles. Surprisingly, for the case \(N=7\) there are three different optimal arrangements. Our proof is based on a computer enumeration of toroidal irreducible contact graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. By the way, the same reasons of general position help us think that if there are less then n equations, i.e., less than \(2N-1\) edges, then the space of solutions has positive dimension. Thus there is an infinitesimal motion possible and a graph with less than \(2N-1\) edges could not be an irreducible contact graph.

  2. Recall that \(\Vert u\Vert _\infty \) is the maximal of the absolute values of the coordinates of u.

  3. \(F_{(ij)}\) means the coordinate that corresponds to the equation for the edge ij.

References

  1. Brass, P., Moser, W.O.J., Pach, J.: Research Problems in Discrete Geometry. Springer, New York (2005)

    MATH  Google Scholar 

  2. Brinkmann, G., McKay, B.D.: Fast generation of planar graphs. http://cs.anu.edu.au/~bdm/plantri/. Accessed 2012

  3. Connelly, R.: Juxtapositions rigides de cercles et de spheres. I. Juxtapositions finies. Struct. Topol. (14), 4360 (1988) (Dual French–English text)

  4. Connelly, R.: Juxtapositions rigides de cercles et de spheres. II. Juxtapositions infinies de mouvement fini. Struct. Topol. (16), 5776 (1990) (Dual French–English text)

  5. Connelly, R.: Rigidity of packings. Eur. J. Comb. 29(8), 1862–1871 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Connelly, R., Dickinson, W.: Periodic planar disc packings. Philos. Trans. R. Soc. Lond. A 372, 20120039 (2014)

    Article  MathSciNet  Google Scholar 

  7. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 2nd edn. Springer, New York (1993)

    Book  MATH  Google Scholar 

  8. Danzer, L.: Finite point-sets on \(\mathbf{S}^2\) with minimum distance as large as possible. Discrete Math. 60, 3–66 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dickinson, W., Guillot, D., Keaton, A., Xhumari, S.: Optimal packings of up to five equal circles on a square flat torus. Beitr. Algebra Geom. 52(2), 315–333 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Habicht, W., van der Waerden, B.L.: Lagerungen von Punkten auf der Kugel. Math. Ann. 123, 223–234 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  11. Melissen, J.B.M.: Densest packing of six equal circles in a square. Elem. Math. 49, 27–31 (1994)

    MATH  MathSciNet  Google Scholar 

  12. Musin, O.R., Tarasov, A.S.: The strong thirteen spheres problem. Discrete Comput. Geom. 48, 128–141 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Schaer, J.: The densest packing of 9 circles in a square. Can. Math. Bull. 8, 273–277 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  14. Schaer, J., Meir, A.: On a geometric extremum problem. Can. Math. Bull. 8, 21–27 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schütte, K., Van der Waerden, B.L.: Auf welcher Kugel haben 5,6,7,8 oder 9 Punkte mit Mindestabstand 1 Platz? Math. Ann. 123, 96–124 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  16. Schütte, K., van der Waerden, B.L.: Das Problem der dreizehn Kugeln. Math. Ann. 125, 325–334 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sulanke, T.: Generating irreducible triangulations of surfaces. arXiv:math/0606687

  18. Tóth, L.F.: Lagerungen in der Ebene, auf der Kugel und in Raum. Springer, New York (1953). Russian translation, Moscow, 1958

    Book  MATH  Google Scholar 

  19. Tóth, L.F.: Regular Figures. International Series of Monographs on Pure and Applied Mathematics, vol. 48. Macmillan, New York (1964)

    Google Scholar 

  20. Usikov, D.A.: Optimal circle packings of a flat square torus. Private Communication, 2004

Download references

Acknowledgments

We wish to thank Alexey Tarasov, Vladislav Volkov and Brittany Fasy for some useful comments and remarks, and especially Thom Sulanke for modifying surftri to suit our purposes. Oleg R. Musin was partially supported by the NSF Grant DMS-1400876 and by the RFBR Grant 15-01-99563. Anton V. Nikitenko was supported by the Chebyshev Laboratory (Department of Mathematics and Mechanics, St. Petersburg State University) under RF Government Grant 11.G34.31.0026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton V. Nikitenko.

Additional information

Editor in Charge: Herbert Edelsbrunner

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 132855 KB)

Appendices

Appendix 1: Numerical Bounds for the Graphs

Here we present the numerical bounds for the edges of \(G_1\) and \(G_2\) produced by the code

figure a

For \(G_1\) we have \(\delta <0.002\) and \(\varepsilon <0.002\). After calculating the inverse of the differential we get \(h\ge \frac{1}{16}\), and so the sufficient inequality \(\varepsilon <\frac{h}{4}\) holds.

Similarly, for \(G_2\) we get \(h\ge \frac{1}{35}\) and still \(\varepsilon < \frac{h}{4}\).

Appendix 2: Coordinates of the Graphs

Here are some exact values for the coordinates of the vertices of the optimal graphs:

$$\begin{aligned} N= & {} 2: \big (0, 0\big ), \big (\tfrac{1}{2}, \tfrac{1}{2}\big ). \\ N= & {} 3: \big (0, 0\big ), \big (\tfrac{1}{2}, \tfrac{\sqrt{3}}{2}\big ), \big (\tfrac{\sqrt{3}-1}{2}, \tfrac{\sqrt{3}-1}{2}\big ). \\ N= & {} 4: \big (0, 0\big ), \big (\tfrac{1}{2}, \tfrac{\sqrt{3}}{2}\big ), \big (\tfrac{\sqrt{3}-1}{2}, \tfrac{\sqrt{3}-1}{2}\big ), \big (\tfrac{\sqrt{3}}{2}, \tfrac{1}{2}\big ). \\ N= & {} 5: \big (0, 0\big ), \big (\tfrac{2}{5}, \tfrac{1}{5}\big ), \big (\tfrac{4}{5}, \tfrac{2}{5}\big ), \big (\tfrac{1}{5}, \tfrac{3}{5}\big ), \big (\tfrac{3}{5}, \tfrac{4}{5}\big ). \end{aligned}$$

The following was achieved by writing down the system of equations for the graph as it appeared to be (i.e., the edges that seem to be horizontal were assumed horizontal, etc) and solving it in MATLAB.

$$\begin{aligned} N= & {} 6: (0, 0),\\&\Big (\tfrac{1}{4}\,\sqrt{3}-\tfrac{1}{12}\,\sqrt{2}\sqrt{3\,\sqrt{3}+2}+\tfrac{1}{12}, -\tfrac{1}{12}\, \Big ( -3\,\sqrt{3}+\sqrt{2}\sqrt{3\,\sqrt{3}+2}-1 \Big ) \sqrt{3}\Big ),\\&\Big ({\tfrac{11}{12}}-\tfrac{1}{4}\,\sqrt{3}+\tfrac{1}{12}\,\sqrt{2}\sqrt{3\,\sqrt{3}+2}, -\tfrac{1}{12}\, \Big ( -3\,\sqrt{3}+\sqrt{2}\sqrt{3\,\sqrt{3}+2}-1 \Big ) \sqrt{3}\Big ),\\&\Big (\tfrac{1}{2}, 1-\tfrac{1}{12}\,\sqrt{3}\sqrt{2}\sqrt{3\,\sqrt{3}+2}+\tfrac{1}{3}\,\sqrt{3}-\tfrac{1}{4}\,\sqrt{2}\sqrt{3\,\sqrt{3}+2}\Big ),\\&\Big ({\tfrac{5}{12}}-\tfrac{1}{4}\,\sqrt{3}+\tfrac{1}{12}\,\sqrt{2}\sqrt{3\,\sqrt{3}+2}, \tfrac{5}{4}+\tfrac{1}{4}\,\sqrt{3}-\tfrac{1}{4}\,\sqrt{2}\sqrt{3\,\sqrt{3}+2}\Big ),\\&\Big ({\tfrac{7}{12}}+\tfrac{1}{4}\,\sqrt{3}-\tfrac{1}{12}\,\sqrt{2}\sqrt{3\,\sqrt{3}+2}, \tfrac{5}{4}+\tfrac{1}{4}\,\sqrt{3}-\tfrac{1}{4}\,\sqrt{2}\sqrt{3\,\sqrt{3}+2}\Big ). \end{aligned}$$

For \(N=7\) and 8 for all the optimal graphs we just write down the edge coordinates, as there are only 6 types of them and they look simpler than the point coordinates: \(\Big (\tfrac{1}{2} \frac{1}{1+\sqrt{3}}, \pm \tfrac{\sqrt{3}}{2}\frac{1}{1+\sqrt{3}}\Big ), \Big (\tfrac{\sqrt{3}}{2}\frac{1}{1+\sqrt{3}}, \pm \tfrac{1}{2} \frac{1}{1+\sqrt{3}}\Big ), \Big (0, \frac{1}{1+\sqrt{3}}\Big )\), \(\Big (\frac{1}{1+\sqrt{3}}, 0\Big )\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musin, O.R., Nikitenko, A.V. Optimal Packings of Congruent Circles on a Square Flat Torus. Discrete Comput Geom 55, 1–20 (2016). https://doi.org/10.1007/s00454-015-9742-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-015-9742-6

Keywords

Navigation