Discrete & Computational Geometry

, Volume 54, Issue 4, pp 954–979 | Cite as

Many 2-Level Polytopes from Matroids



The family of 2-level matroids, that is, matroids whose base polytope is 2-level, has been recently studied and characterized by means of combinatorial properties. 2-Level matroids generalize series-parallel graphs, which have been already successfully analyzed from the enumerative perspective. We bring to light some structural properties of 2-level matroids and exploit them for enumerative purposes. Moreover, the counting results are used to show that the number of combinatorially non-equivalent \((n-1)\)-dimensional 2-level polytopes is bounded from below by \(c \cdot n^{-5/2} \cdot \rho ^{-n}\), where \(c\approx 0.03791727 \) and \(\rho ^{-1} \approx 4.88052854\).


Matroid theory 2-level polytopes Analytic combinatorics Asymptotic enumeration 



F. G. was supported by the DFG within the research training group Methods for Discrete Structures (GRK1408). J. R. was partially supported by the Spanish MICINN Grant MTM2011-22851, the FP7-PEOPLE-2013-CIG project CountGraph (Ref. 630749), the DFG within the research training group Methods for Discrete Structures (GRK1408), and the Berlin Mathematical School. The authors thank Raman Sanyal for inspiring discussions and for accurate reading of this paper. Francisco Santos and Günter Ziegler are also thanked for helpful comments and suggestions.


  1. 1.
    Bergeron, F., Labelle, G., Leroux, P., Readdy, M.: Combinatorial Species and Tree-like Structures. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  2. 2.
    Bodirsky, M., Giménez, O., Kang, M., Noy, M.: Enumeration and limit laws for series-parallel graphs. Eur. J. Comb. 28(8), 2091–2105 (2007)CrossRefMATHGoogle Scholar
  3. 3.
    Borovik, A.V., Gel’fand, I.M., White, N.: Coxeter Matroids. Progress in Mathematics, vol. 216. Birkhäuser Boston, Boston (2003)CrossRefMATHGoogle Scholar
  4. 4.
    Cunningham, W.H., Edmonds, J.: A combinatorial decomposition theory. Can. J. Math. 32(3), 734–765 (1980)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    De Loera, J.A., Rambau, J., Santos, F.: Triangulations. Algorithms and Computation in Mathematics, vol. 25. Springer, Berlin (2010)MATHGoogle Scholar
  6. 6.
    Drmota, M.: Systems of functional equations. Random Struct. Algorithms 10(1–2), 103–124 (1997)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Drmota, M.: Random Trees. Springer, Wien, NewYork, Vienna (2009)CrossRefMATHGoogle Scholar
  8. 8.
    Drmota, M., Fusy, É., Kang, M., Kraus, V., Rué, J.: Asymptotic study of subcritical graph classes. SIAM J. Discrete Math. 25(4), 1615–1651 (2011)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Flajolet, P., Odlyzko, A.: Singularity analysis of generating functions. SIAM J. Discrete Math. 3(2), 216–240 (1990)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)CrossRefMATHGoogle Scholar
  11. 11.
    Freij, R., Henze, M., Schmitt, M.W., Ziegler, G.M.: Face numbers of centrally symmetric polytopes produced from split graphs. Electron. J. Combin. 20(2):Paper 32, 15, (2013)Google Scholar
  12. 12.
    Gelfand, I.M., Goresky, M., MacPherson, R.D., Serganova, V.V.: Combinatorial geometries, convex polyhedra, and Schubert cells. Adv. Math. 63(3), 301–316 (1987)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gouveia, J., Parrilo, P.A., Thomas, R.R.: Theta bodies for polynomial ideals. SIAM J. Optim. 20(4), 2097–2118 (2010)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Grande, F., Sanyal, R.: Theta rank, levelness, and matroids minors. arXiv:1408.1262v2 (2015)
  15. 15.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics, vol. 2, 2nd edn. Springer, Berlin (1993)CrossRefMATHGoogle Scholar
  16. 16.
    Hanner, O.: Intersections of translates of convex bodies. Math. Scand. 4, 65–87 (1956)MathSciNetMATHGoogle Scholar
  17. 17.
    Hansen, A.B.: On a certain class of polytopes associated with independence systems. Math. Scand. 41(2), 225–241 (1977)MathSciNetGoogle Scholar
  18. 18.
    Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Emerging Applications of Algebraic Geometry. IMA Volumes in Mathematics and Its Applications, vol. 149, pp. 157–270. Springer, New York (2009)Google Scholar
  19. 19.
    McMullen, P.: Constructions for projectively unique polytopes. Discrete Math. 14(4), 347–358 (1976)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Oxley, J.: Matroid Theory. Oxford Graduate Texts in Mathematics, vol. 21, 2nd edn. Oxford University Press, Oxford (2011)CrossRefMATHGoogle Scholar
  21. 21.
    Sanyal, R., Werner, A., Ziegler, G.M.: On Kalai’s conjectures concerning centrally symmetric polytopes. Discrete Comput. Geom. 41(2), 183–198 (2009)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Stanley, R.P.: Two poset polytopes. Discrete Comput. Geom. 1(1), 9–23 (1986)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Sullivant, S.: Compressed polytopes and statistical disclosure limitation. Tohoku Math. J. 58(3), 433–445 (2006)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Tutte, W.T.: Graph Theory. Encyclopedia of Mathematics and Its Applications, vol. 21. Cambridge University Press, Cambridge (2001)MATHGoogle Scholar
  25. 25.
    White, N. (ed.): Theory of Matroids. Encyclopedia of Mathematics and Its Applications, vol. 26. Cambridge University Press, Cambridge (1986)MATHGoogle Scholar
  26. 26.
    Ziegler, G.M.: Lectures on \(0/1\)-polytopes. In: Polytopes—Combinatorics and Computation (Oberwolfach, 1997). DMV Sem., vol. 29, pp. 1–41. Birkhäuser, Basel (2000)Google Scholar
  27. 27.
    Ziegler, G.M.: Convex polytopes: example and conjectures. Doc course combinatorics and geometry 2009. Discrete Comput. Geom. CRM Documents 5.1(3):9–49 (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institut für Mathematik und InformatikFreie Universität BerlinBerlinGermany
  2. 2.Institut für Mathematik und InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations