Skip to main content
Log in

A Variant of the Hadwiger–Debrunner (pq)-Problem in the Plane

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Let X be a convex curve in the plane (say, the unit circle), and let \({\mathcal {S}}\) be a family of planar convex bodies such that every two of them meet at a point of X. Then \({\mathcal {S}}\) has a transversal \(N\subset {\mathbb {R}}^2\) of size at most \(1.75\times 10^9\). Suppose instead that \({\mathcal {S}}\) only satisfies the following “(p, 2)-condition”: Among every p elements of \({\mathcal {S}}\), there are two that meet at a common point of X. Then \({\mathcal {S}}\) has a transversal of size \(O(p^8)\). For comparison, the best known bound for the Hadwiger–Debrunner (pq)-problem in the plane, with \(q=3\), is \(O(p^6)\). Our result generalizes appropriately for \({\mathbb {R}}^d\) if \(X\subset {\mathbb {R}}^d\) is, for example, the moment curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Throughout this paper, we allow \({\mathcal {S}}\) to be a multi-set, meaning the elements of \({\mathcal {S}}\) need not be pairwise distinct.

  2. The bound of Alon et al. can actually be improved to \(f_{2}(\varepsilon )\le 6.37\varepsilon ^{-2} + o(\varepsilon ^{-2})\) by simply optimizing the parameter involved in the divide-and-conquer argument. This would lead to a modest improvement in our bound for |M|.

  3. Alon et al. state this lemma specifically for the moment curve, but it is true for any convex curve.

References

  1. Aigner, M., Ziegler, G.: Proofs from THE BOOK, 4th edn. Springer, Berlin (2010)

    Book  Google Scholar 

  2. Alon, N., Kleitman, D.J.: Piercing convex sets and the Hadwiger–Debrunner \((p, q)\)-problem. Adv. Math. 96, 103–112 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alon, N., Kleitman, D.J.: A purely combinatorial proof of the Hadwiger–Debrunner \((p, q)\) conjecture. Electron. J. Comb. 4(2), R1, 8 pp. (1997)

  4. Alon, N., Bárány, I., Füredi, Z., Kleitman, D.: Point selections and weak \(\varepsilon \)-nets for convex hulls. Comb. Probab. Comput. 1, 189–200 (1992)

    Article  MATH  Google Scholar 

  5. Alon, N., Kaplan, H., Nivasch, G., Sharir, M., Smorodinsky, S.: Weak \(\varepsilon \)-nets and interval chains. J. ACM 55, #28, 32 pp. (2008)

  6. Bukh, B., Matoušek, J., Nivasch, G.: Lower bounds for weak epsilon-nets and stair-convexity. Isr. J. Math. 182, 199–228 (2011)

    Article  MATH  Google Scholar 

  7. Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L., Sharir, M., Welzl, E.: Improved bounds on weak \(\varepsilon \)-nets for convex sets. Discrete Comput. Geom. 13, 1–15 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Danzer, L.: Zur Lösung des Gallaischen Problems über Kreisscheiben in der Euklidischen Ebene. Stud. Sci. Math. Hung. 21, 111–134 (1986)

    MATH  MathSciNet  Google Scholar 

  9. Dumitrescu, A., Jiang, M.: Piercing translates and homothets of a convex body. Algorithmica 61, 94–115 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Eckhoff, J.: A survey of the Hadwiger–Debrunner \((p,q)\)-problem. In: Aronov, B., et al. (eds.) Discrete and Computational Geometry: The Goodman–Pollack Festschrift. Algorithms and Combinatorics, vol. 25, pp. 347–377. Springer, Berlin (2003)

    Chapter  Google Scholar 

  11. Grünbaum, B.: On intersections of similar sets. Port. Math. 18, 155–164 (1959)

    MATH  Google Scholar 

  12. Hadwiger, H., Debrunner, H.: Über eine Variante zum Helly’schen Satz. Arch. Math. 8, 309–313 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  13. Helly, E.: Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresber. Dtsch. Math.-Ver. 32, 175–176 (1923)

    MATH  Google Scholar 

  14. Kalai, G.: Intersection patterns of convex sets. Isr. J. Math. 48, 161–174 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Katchalski, M., Liu, A.: A problem of geometry in \(R^n\). Proc. Am. Math. Soc. 75, 284–288 (1979)

    MATH  MathSciNet  Google Scholar 

  16. Kim, S.-J., Nakprasit, K., Pelsmajer, M.J., Skokan, J.: Transversal numbers of translates of a convex body. Discrete Math. 306, 2166–2173 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Matoušek, J.: Lectures on Discrete Geometry. Springer, New York (2002)

    Book  MATH  Google Scholar 

  18. Matoušek, J., Gärtner, B.: Understanding and Using Linear Programming. Springer, Berlin (2007)

    MATH  Google Scholar 

  19. Matoušek, J., Wagner, U.: New constructions of weak \(\varepsilon \)-nets. Discrete Comput. Geom. 32, 195–206 (2004)

    MATH  MathSciNet  Google Scholar 

  20. Turán, P.: On an extremal problem in graph theory. Mat. Fiz. Lapok 48, 436–452 (1941)

    MathSciNet  Google Scholar 

  21. Ziegler, G.: Lectures on Polytopes. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  22. Živaljevič, R.T.: Topological methods. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry (Chap. 14), 2nd edn, pp. 305–329. Chapman & Hall/CRC, Boca Raton (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathish Govindarajan.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindarajan, S., Nivasch, G. A Variant of the Hadwiger–Debrunner (pq)-Problem in the Plane. Discrete Comput Geom 54, 637–646 (2015). https://doi.org/10.1007/s00454-015-9723-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-015-9723-9

Keywords

Navigation