Skip to main content
Log in

Cubic Tessellations of the Helicosms

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Up to isomorphism, there are six fixed-point free crystallographic groups in Euclidean 3-space \(\mathbb {E}^3\) generated by twists (screw motions). In each case, an orientable 3-manifold is obtained as the quotient of \(\mathbb {E}^3\) by such a group. The cubic tessellation of \(\mathbb {E}^3\) induces tessellations on each such manifold. The corresponding classification for the 3-torus and the didicosm were classified as ‘equivelar toroids’ and ‘cubic tessellation of the didicosm’ in previous works. This paper concludes the classification of cubic tessellations on the remaining four orientable manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brehm, U., Kühnel, W.: Equivelar maps on the torus. Eur. J. Comb. 29, 1843–1861 (2008)

    Article  MATH  Google Scholar 

  2. Charlap, L.S.: Bieberbach Groups and Flat Manifolds. Universitext Mathematical Physics and Mathematics. Springer, New York (1986)

    Google Scholar 

  3. Conway, J.H., Burgiel, H., Goodman-Strauss, C.: The Symmetries of Things. A K Peters Ltd., Wellesley, MA (2008)

    MATH  Google Scholar 

  4. Conway, J.H., Rossetti, J.P.: Describing the Platycosms, arXiv:math.DG/0311476

  5. Conway, J.H., Rossetti, J.P.: Hearing the platycosms. Math. Res. Lett. 13, 475–494 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Coxeter, H.S.M.: Configurations and maps. Rep. Math. Colloq. (2) 8, 18–38 (1948)

    MathSciNet  Google Scholar 

  7. Coxeter, H.S.M., Moser, W.O.J.: Generators and Relations for Discrete Groups, 4th edn. Springer, Berlin (1980)

    Book  Google Scholar 

  8. Doyle, P.G., Rossetti, J.P.: Tetra and Didi, the cosmic spectral twins. Geom. Topol. 8, 1227–1242 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Edmonds, A.L., Ewing, J.H., Kulkarni, R.S.: Regular tessellations of surfaces and \((p,q,2)\)-triangle groups. Ann. Math. (2) 116, 113–132 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hantzsche, W., Wendt, H.: Dreidimensionale euklidische Raumformen. Math. Ann. 110, 593–611 (1934–35)

  11. Hartley, M.I., McMullen, P., Schulte, E.: Symmetric tessellations on Euclidean space-forms. Can. J. Math. 51, 1230–1239 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hillman, J.A.: Flat 4-manifold groups. N. Z. J. Math. 24 1, 29–40 (1995)

    MathSciNet  Google Scholar 

  13. Hubard, I., Orbanic, A., Pellicer, D., Weiss, A.I.: Symmetries of equivelar 4-toroids. Discrete Comput. Geom. 48, 1110–1136 (2012)

    MATH  MathSciNet  Google Scholar 

  14. Hubard, I., Mixer, M., Pellicer, D., Weiss, A.I.: Cubic tessellations of the didicosm. Adv. Geom. 14(2), 299–318 (2014)

    MATH  MathSciNet  Google Scholar 

  15. Isangulov, R.R.: Isospectral flat 3-manifolds. Sib. Math. J. 45, 894–914 (2004)

    Article  MathSciNet  Google Scholar 

  16. Kurth, W.: Enumeration of platonic maps on the torus. Discrete Math. 61, 71–83 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. McMullen, P., Schulte, E.: Higher toroidal regular polytopes. Adv. Math. 117, 17–51 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. McMullen, P., Schulte, E.: Abstract regular polytopes. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  19. Nowacki, W.: Die euklidischen, dreidimensionalen, geschlossenen und offenen Raumformen. Comment. Math. Helv. 7, 81–93 (1934)

    Article  MathSciNet  Google Scholar 

  20. Thomassen, C.: Tilings of the torus and the Klein bottle and vertex-transitive graphs on a fixed surface. Trans. Am. Math. Soc. 323, 605–635 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wilson, S.: Uniform maps on the Klein bottle. J. Geom. Graph. 10, 161–171 (2006)

    MATH  MathSciNet  Google Scholar 

  22. Wolf, J.A.: Spaces of Constant Curvature, 5th edn. Publish or Perish, Wilmington, DE (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Mixer.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hubard, I., Mixer, M., Pellicer, D. et al. Cubic Tessellations of the Helicosms. Discrete Comput Geom 54, 686–704 (2015). https://doi.org/10.1007/s00454-015-9721-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-015-9721-y

Keywords

Navigation