Skip to main content
Log in

Polytopes with Preassigned Automorphism Groups

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We prove that every finite group is the automorphism group of a finite abstract polytope isomorphic to a face-to-face tessellation of a sphere by topological copies of convex polytopes. We also show that this abstract polytope may be realized as a convex polytope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bayer, M.M.: Barycentric subdivisions. Pac. J. Math. 135(1), 1–16 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cori, R., Machi, A.: Construction of maps with prescribed automorphism groups. Theor. Comput. Sci. 21, 91–98 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Conway, J.H., Burgiel, H., Goodman-Strauss, C.: The Symmetries of Things. A K Peters Ltd., Wellesley, MA (2008)

    MATH  Google Scholar 

  4. Coxeter, H.S.M.: Regular and semi-regular polytopes, I. Math. Z. 46:380–407, 1940. In: Sherk, F.A., McMullen, P., Thompson, A.C., Weiss, A.I. (eds.) Kaleidoscopes: Selected Writings of H. S. M. Coxeter, pp. 251–278. Wiley, New York (1995)

  5. Coxeter, H.S.M.: Regular Polytopes. Dover Publications, New York (1973)

    Google Scholar 

  6. Coxeter, H.S.M.: Regular and semi-regular polytopes, II. Math. Z. 188:559–591, (1985). In: Sherk, F.A., McMullen, P., Thompson, A.C., Weiss, A.I. (eds.) Kaleidoscopes: Selected Writings of H. S. M. Coxeter pp. 279–311, Wiley, New York (1995)

  7. Dress, A.: A combinatorial theory of Grünbaum’s new regular polyhedra, part I: Grünbaum’s new regular polyhedra and their automorphism group. Aequationes Math. 23, 252–265 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dress, A.: A combinatorial theory of Grünbaum’s new regular polyhedra, part II: Complete enumeration. Aequationes Math. 29, 222–243 (1985)

    Article  MathSciNet  Google Scholar 

  9. Frucht, R.: Herstellung von Graphen mit vorgegebener abstrakter Gruppe. Compos. Math. 6, 239–250 (1938)

    MathSciNet  Google Scholar 

  10. Goodman, J.E., O’Rourke, J. (eds.): Handbook of Discrete and Computational Geometry. Discrete Mathematics and Its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, second edition (2004)

  11. Gross, J.L., Tucker, T.W.: Topological Graph Theory, 2nd edn. Dover, New York (2001). (First Edition, Wiley, 1987)

    MATH  Google Scholar 

  12. Grünbaum, B.: Convex Polytopes. Graduate Texts in Mathematics, vol. 221, 2nd edn. Springer, New York. (2003)

  13. Grünbaum, B.: Regular polyhedra—old and new. Aequationes Math. 16(1–2), 1–20 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grünbaum, B., Shephard, G.C.: Tilings and Patterns. A Series of Books in the Mathematical Sciences. W. H. Freeman and Company, New York (1989). An introduction

    Google Scholar 

  15. McMullen, P., Schulte, E.: Abstract Regular Polytopes. Cambridge University Press, Cambridge, MA (2002)

    Book  MATH  Google Scholar 

  16. Monson, B., Schulte, Egon: Finite polytopes have finite regular covers. J. Algebr. Comb. 40(1), 75–82 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Monson, B., Pellicer, D., Williams, G.I.: Mixing and monodromy of abstract polytopes. Trans. Am. Math. Soc. 366, 2651–2681 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pellicer, D.: Developments and open problems on chiral polytopes. Ars Math. Contemp. 5(2), 333–354 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Schulte, E., Weiss, A.I.: Chiral Polytopes. In: Applied Geometry and Discrete Mathematics (The Klee Festschrift), P. Gritzmann and B. Sturmfels (eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4. American Mathematical Society and Association of Computing Machinery, Providence, RI, pp. 493–516 (1991)

  20. Širáň, J., Škoviera, M.: Orientable and non-orientable maps with given automorphism groups. Australas. J. Comb. 7, 47–53 (1993)

    MATH  Google Scholar 

  21. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Branko Grünbaum for providing useful comments during the preparation of this paper; Tom Tucker for some helpful discussion about group actions on maps; and finally the referees for making valuable suggestions that have improved the paper. The first author was supported by NSA-grant H98230-14-1-0124.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon Ian Williams.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulte, E., Williams, G.I. Polytopes with Preassigned Automorphism Groups. Discrete Comput Geom 54, 444–458 (2015). https://doi.org/10.1007/s00454-015-9710-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-015-9710-1

Keywords

Mathematics Subject Classification

Navigation