Skip to main content
Log in

Erdős–Szekeres Theorem for Lines

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

According to the Erdős–Szekeres theorem, for every n, a sufficiently large set of points in general position in the plane contains n in convex position. In this note we investigate the line version of this result, that is, we want to find n lines in convex position in a sufficiently large set of lines that are in general position. We prove almost matching upper and lower bounds for the minimum size of the set of lines in general position that always contains n in convex position. This is quite unexpected, since in the case of points, the best known bounds are very far from each other. We also establish the dual versions of many variants and generalizations of the Erdős–Szekeres theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Avis, D., Hosono, K., Urabe, M.: On the existence of a point subset with a specified number of interior points. Discrete Math. 241(1), 33–40 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bárány, I., Károlyi, G.: Problems and results around the Erdős–Szekeres convex polygon theorem. In: Akiyama, J., Kano, M., Urabe, M. (eds.) Discrete and Computational Geometry (Tokyo, 2000). Lecture Notes in Computer Science, vol. 2098, pp. 91–105. Springer, Berlin (2001)

    Google Scholar 

  3. Bárány, I., Pach, J.: Homogeneous selections from hyperplanes. J. Comb. Theory Ser. B 104, 81–87 (2014)

    Article  MATH  Google Scholar 

  4. Bárány, I., Valtr, P.: A positive fraction Erdős–Szekeres theorem. Discrete Comput. Geom. 19, 335–342 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Christ, T.: Discrete descriptions of geometric objects. Ph.D. Thesis, ETH Zurich Institute for Theoretical Computer Science. http://e-collection.library.ethz.ch/view/eth:5242 (2011)

  6. Chung, F.R.K., Graham, R.L.: Forced convex \(n\)-gons in the plane. Discrete Comput. Geom. 19(3), 367–371 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Erdős, P.: Some applications of graph theory and combinatorial methods to number theory and geometry. In: Lovász, L., Sós, V.T. (eds.) Algebraic Methods in Graph Theory, Vol. I, II (Szeged, 1978). Colloquia Mathematica Societatis János Bolyai, vol. 25, pp. 137–148. North-Holland, Amsterdam (1981)

  8. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935)

    Google Scholar 

  9. Erdős, P., Szekeres, G.: On some extremum problems in elementary geometry. Ann. Univ. Sci. Bp. Eötvös Sect. Math. 3–4, 53–62 (1960)

    Google Scholar 

  10. Felsner, S., Kriegel, K.: Triangles in Euclidean arrangements. Discrete Comput. Geom. 22(3), 429–438 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fox, J., Gromov, M., Lafforgue, V., Naor, A., Pach, J.: Overlap properties of geometric expanders. J. Reine Angew. Math. 671, 49–83 (2012)

    MATH  MathSciNet  Google Scholar 

  12. Füredi, Z., Palásti, I.: Arrangements of lines with a large number of triangles. Proc. Am. Math. Soc. 92(4), 561–566 (1984)

    Article  MATH  Google Scholar 

  13. Gerken, T.: Empty convex hexagons in planar point sets. Discrete Comput. Geom. 39(2), 239–272 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grünbaum, B.: Arrangements and Spreads, vol. 10. American Mathematical Society, Providence, RI (1972)

    MATH  Google Scholar 

  15. Harborth, H.: Konvexe Fünfecke in ebenen Punktmengen. Elem. Math. 33(5), 116–118 (1978)

    MATH  MathSciNet  Google Scholar 

  16. Harborth, H., Möller, M.: The Esther Klein problem in the projective plane. J. Combin. Math. Combin. Comput. 15, 171–179 (1994)

    MATH  MathSciNet  Google Scholar 

  17. Horton, J.D.: Sets with no empty convex \(7\)-gons. Can. Math. Bull. 26(4), 482–484 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kleitman, D., Pachter, L.: Finding convex sets among points in the plane. Discrete Comput. Geom. 19(3), 405–410 (1998). Dedicated to the memory of Paul Erdős

  19. Leanos, J., Lomeli, M., Merino, C., Salazar, G., Urrutia, J.: Simple Euclidean arrangements with no (\(\ge \) \(5\))-gons. Discrete Comput. Geom. 38(3), 595–603 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Levi, F.: Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade. Ber. Math. Phys. Kl. Sächs. Akad. Wiss 78, 256–267 (1926)

    Google Scholar 

  21. Morris, W., Soltan, V.: The Erdős–Szekeres problem on points in convex position—a survey. Bull. Am. Math. Soc. New Ser. 37(4), 437–458 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nicolás, C.M.: The empty hexagon theorem. Discrete Comput. Geom. 38(2), 389–397 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pach, J., Solymosi, J.: Canonical theorems for convex sets. Discrete Comput. Geom. 19(3), 427–435 (1998). Dedicated to the memory of Paul Erdős

  24. Pór, A., Valtr, P.: The partitioned version of the Erdős–Szekeres theorem. Discrete Comput. Geom. 28(4), 625–637 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Szekeres, G., Peters, L.: Computer solution to the 17-point Erdős–Szekeres problem. ANZIAM J. 48(2), 151–164 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tóth, G., Valtr, P.: Note on the Erdős–Szekeres theorem. Discrete Comput. Geom. 19(3), 457–459 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Tóth, G., Valtr, P.: The Erdős–Szekeres theorem: upper bounds and related results. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry. Mathematical Sciences Research Institute Publications, vol. 52, pp. 557–568. Cambridge University Press, Cambridge (2005)

  28. Wei, X., Ding, R.: More on an Erdős–Szekeres-type problem for interior points. Discrete Comput. Geom. 42(4), 640–653 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Research of the first and second authors was partially supported by ERC Advanced Research Grant No. 267165 (DISCONV), and research of the first and third authors by Hungarian Science Foundation Grant OTKA K 83767 and K 111827. Research of the third author was also supported by Hungarian Science Foundation Grant OTKA NN 102029 under the EuroGIGA programs ComPoSe and GraDR. We would like to thank Miguel Raggi who offered to write the program that determined the value of \({\text {ES}}_l(5)\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Géza Tóth.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bárány, I., Roldán-Pensado, E. & Tóth, G. Erdős–Szekeres Theorem for Lines. Discrete Comput Geom 54, 669–685 (2015). https://doi.org/10.1007/s00454-015-9705-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-015-9705-y

Keywords

Mathematics Subject Classification

Navigation