Discrete & Computational Geometry

, Volume 52, Issue 2, pp 153–194 | Cite as

Smooth Fano Polytopes with Many Vertices

Article

Abstract

The \(d\)-dimensional simplicial, terminal, and reflexive polytopes with at least \(3d-2\) vertices are classified. In particular, it turns out that all of them are smooth Fano polytopes. This improves on previous results of Casagrande (Ann Inst Fourier (Grenoble) 56(1):121–130, 2006) and Øbro (Manuscr Math 125(1): 69–79, 2008). Smooth Fano polytopes play a role in algebraic geometry and mathematical physics.

Keywords

Toric Fano varieties Lattice polytopes Terminal polytopes  Smooth polytopes 

Mathematics Subject Classification

52B20 14M25 14J45 

References

  1. 1.
    Batyrev, V.V.: On the classification of smooth projective toric varieties. Tohoku Math. J. (2) 43(4), 569–585 (1991). doi:10.2748/tmj/1178227429 CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties. J. Algebr. Geom. 3, 493–535 (1994)MATHMathSciNetGoogle Scholar
  3. 3.
    Batyrev, V.V.: On the classification of toric Fano 4-folds. J. Math. Sci. (New York) 94(1), 1021–1050 (1999). doi:10.1007/BF02367245 CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Batyrev, V.V., Borisov, L.A.: Mirror duality and string-theoretic Hodge numbers. Invent. Math. 126, 183–203 (1996)Google Scholar
  5. 5.
    Brown, G., Kasprzyk, A.: Graded ring data base 2009–2012. http://grdb.lboro.ac.uk/. Accessed 15 Jul 2014
  6. 6.
    Casagrande, C.: Centrally symmetric generators in toric Fano varieties. Manuscr. Math. 111(4), 471–485 (2003)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Casagrande, C.: The number of vertices of a Fano polytope. Ann. Inst. Fourier (Grenoble) 56(1), 121–130 (2006). doi:10.5802/aif.2175 CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Cox, D.A., Little, J.B., Schenck, H.K.: Toric varieties. Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI (2011)Google Scholar
  9. 9.
    Ewald, G.: On the classification of toric Fano varieties. Discrete Comput. Geom. 3(1), 49–54 (1988). doi:10.1007/BF02187895 CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Ewald, G.: Combinatorial convexity and algebraic geometry. Graduate Texts in Mathematics, vol. 168. Springer, New York (1996)Google Scholar
  11. 11.
    Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes, polytopes–combinatorics and computation (Oberwolfach, 1997), DMV Sem., vol. 29, pp. 43–73. Birkhäuser, Basel (2000)Google Scholar
  12. 12.
    Kreuzer, M., Nill, B.: Classification of toric Fano 5-folds. Adv. Geom. 9(1), 85–97 (2009). doi:10.1515/ADVGEOM.2009.005 CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Kreuzer, M., Skarke, H.: On the classification of reflexive polyhedra. Commun. Math. Phys. 185(2), 495–508 (1997). doi:10.1007/s002200050100 CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Kreuzer, M., Skarke, H.: On the classification of reflexive polyhedra in four dimensions. Adv. Theor. Math. Phys. 4, 1209–1230 (2002)Google Scholar
  15. 15.
    Lorenz, B., Paffenholz, A.: Smooth reflexive polytopes up to dimension 9 (2008). http://polymake.org/polytopes/paffenholz/www/fano.html. Accessed 15 Jul 2014
  16. 16.
    Nill, B.: Gorenstein toric Fano varieties. Manuscr. Math. 116(2), 183–210 (2005). doi:10.1007/s00229-004-0532-3 CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Benjamin N.: Classification of pseudo-symmetric simplicial reflexive polytopes. In: Algebraic and Geometric Combinatorics. Contemporary Mathematics, vol. 423, pp. 269–282. American Mathematical Society, Providence, RI (2006). doi:10.1090/conm/423/08082
  18. 18.
    Nill, B., Øbro, M.: \({\mathbb{Q}}\)-factorial Gorenstein toric Fano varieties with large Picard number. Tohoku Math. J. (2) 62(1), 1–15 (2010). doi: 10.2748/tmj/1270041023 CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Øbro, M.: Classification of smooth Fano polytopes. Ph.D. thesis, University of Aarhus (2007). Available at https://pure.au.dk/portal/files/41742384/imf_phd_2008_moe. Accessed 15 Jul 2014
  20. 20.
    Øbro, M.: Classification of terminal simplicial reflexive d-polytopes with \(3d-1\) vertices. Manuscr. Math. 125(1), 69–79 (2008). doi: 10.1007/s00229-007-0133-z CrossRefGoogle Scholar
  21. 21.
    Voskresenskiĭ, V.E., Klyachko, A.A.: Toric Fano varieties and systems of roots. Izv. Akad. Nauk SSSR Ser. Mat. 48(2), 237–263 (1984). doi:10.1070/IM1985v024n02ABEH001229 MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Inst. MathematikTU BerlinBerlinGermany
  2. 2.FB MathematikTU DarmstadtDarmstadtGermany

Personalised recommendations