Discrete & Computational Geometry

, Volume 51, Issue 1, pp 171–206 | Cite as

Testing Graph Isotopy on Surfaces

Article

Abstract

We investigate the following problem: Given two embeddings G1 and G2 of the same abstract graph G on an orientable surface S, decide whether G1 and G2 are isotopic; in other words, whether there exists a continuous family of embeddings between G1 and G2.

We provide efficient algorithms to solve this problem in two models. In the first model, the input consists of the arrangement of G1 (resp., G2) with a fixed graph cellularly embedded on S; our algorithm is linear in the input complexity, and thus, optimal. In the second model, G1 and G2 are piecewise-linear embeddings in the plane, minus a finite set of points; our algorithm runs in O(n3/2logn) time, where n is the complexity of the input.

The graph isotopy problem is a natural variation of the homotopy problem for closed curves on surfaces and on the punctured plane, for which algorithms have been given by various authors; we use some of these algorithms as a subroutine.

As a by-product, we reprove the following mathematical characterization, first observed by Ladegaillerie (Topology 23:303–311, 1984): Two graph embeddings are isotopic if and only if they are homotopic and congruent by an oriented homeomorphism.

Keywords

Computational topology Embedded graph Homotopy Isotopy Topological graph theory 

References

  1. 1.
    Bentley, J.L., Ottmann, Th.: Algorithms for reporting and counting geometric intersections. In: IEEE Transactions on Computing, vol. 28, pp. 643–647 (1979) Google Scholar
  2. 2.
    Bespamyatnikh, S.: Computing homotopic shortest paths in the plane. J. Algorithms 49, 284–303 (2003) CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bespamyatnikh, S.: Encoding homotopy of paths in the plane. In: LATIN 2004: Theoretical Informatics, the 6th Latin American Symposium. Lecture Notes in Computer Science, vol. 2976, pp. 329–338. Springer, Berlin (2004) CrossRefGoogle Scholar
  4. 4.
    Bing, R.H., Starbird, M.: Linear isotopies in E 2. Trans. Am. Math. Soc. 237, 205–222 (1978) MATHMathSciNetGoogle Scholar
  5. 5.
    Buser, P.: Geometry and Spectra of Compact Riemann Surfaces. Progress in Mathematics, vol. 106. Birkhäuser, Basel (1992) MATHGoogle Scholar
  6. 6.
    Cabello, S., Liu, Y., Mantler, A., Snoeyink, J.: Testing homotopy for paths in the plane. Discrete Comput. Geom. 31, 61–81 (2004) CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Colin de Verdière, É.: Raccourcissement de courbes et décomposition de surfaces. Ph.D. thesis, Université Paris 7 (2003). English translation available at http://www.di.ens.fr/~colin/03these.html
  8. 8.
    Colin de Verdière, É., Erickson, J.: Tightening nonsimple paths and cycles on surfaces. SIAM J. Comput. 39, 3784–3813 (2010) CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Colin de Verdière, É., Lazarus, F.: Optimal system of loops on an orientable surface. Discrete Comput. Geom. 33, 507–534 (2005) CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Colin de Verdière, É., Lazarus, F.: Optimal pants decompositions and shortest homotopic cycles on an orientable surface. J. ACM 54 (2007). Article 18 Google Scholar
  11. 11.
    de Graaf, M., Schrijver, A.: Making curves minimally crossing by Reidemeister moves. J. Comb. Theory, Ser. B 70, 134–156 (1997) CrossRefMATHGoogle Scholar
  12. 12.
    Dey, T.K., Guha, S.: Transforming curves on surfaces. J. Comput. Syst. Sci. 58, 297–325 (1999) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Efrat, A., Kobourov, S.G., Lubiw, A.: Computing homotopic shortest paths efficiently. Comput. Geom. 35, 162–172 (2006) CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Eppstein, D.: Dynamic generators of topologically embedded graphs. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 599–608 (2003) Google Scholar
  15. 15.
    Epstein, D.B.A.: Curves on 2-manifolds and isotopies. Acta Math. 115, 83–107 (1966) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology generators. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1038–1046 (2005) Google Scholar
  17. 17.
    Erickson, J., Whittlesey, K.: Transforming curves on surfaces redux. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1646–1655 (2013) Google Scholar
  18. 18.
    Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton University Press, Princeton (2011) MATHGoogle Scholar
  19. 19.
    Feustel, C.D.: Homotopic arcs are isotopic. Proc. Am. Math. Soc. 17, 891–896 (1966) CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Gotsman, C., Surazhsky, V.: Guaranteed intersection-free polygon morphing. Comput. Graph. 25, 67–75 (2001) CrossRefGoogle Scholar
  21. 21.
    Hamidi-Tehrani, H.: On complexity of the word problem in braid groups and mapping class groups. Topol. Appl. 105, 237–259 (2000) CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002). Available at http://www.math.cornell.edu/~hatcher/ MATHGoogle Scholar
  23. 23.
    Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homotopy class. Comput. Geom. 4, 63–98 (1994) CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Hirsch, M.W.: Differential Topology. Graduate Texts in Mathematics, vol. 33. Springer, Berlin (1994). Corrected reprint of the 1976 original Google Scholar
  25. 25.
    Kettner, L.: Using generic programming for designing a data structure for polyhedral surfaces. Comput. Geom. 13, 65–90 (1999) CrossRefMATHGoogle Scholar
  26. 26.
    Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W., Kang, J.-s., Park, C.: New public-key cryptosystem using braid groups. In: Advances in Cryptology—CRYPTO 2000. Lecture Notes in Computer Science, vol. 1880, pp. 166–183. Springer, Berlin (2000) CrossRefGoogle Scholar
  27. 27.
    Ladegaillerie, Y.: Classes d’isotopie de plongements de 1-complexes dans les surfaces. Topology 23, 303–311 (1984) CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Lazarus, F., Rivaud, J.: On the homotopy test on surfaces. In: Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 440–449 (2012) Google Scholar
  29. 29.
    Lins, S.: Graph-encoded maps. J. Comb. Theory, Ser. B 32, 171–181 (1982) CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Lubiw, A., Petrick, M.: Morphing planar graph drawings with bent edges. Electron. Notes Discrete Math. 31, 45–48 (2008) CrossRefMathSciNetGoogle Scholar
  31. 31.
    Mosher, L.: Mapping class groups are automatic. Ann. Math. 142, 303–384 (1995) CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Ringel, G.: Teilungen der Ebene durch Geraden oder topologische Geraden. Math. Z. 64, 79–102 (1956) CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Stillwell, J.: Classical Topology and Combinatorial Group Theory, 2nd edn. Springer, New York (1993) CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Département d’informatiqueÉcole normale supérieure, CNRSParisFrance
  2. 2.Département d’informatiqueÉcole normale supérieureParisFrance

Personalised recommendations