Discrete & Computational Geometry

, Volume 48, Issue 3, pp 580–595 | Cite as

Affine Properties of Convex Equal-Area Polygons

  • Marcos Craizer
  • Ralph C. Teixeira
  • Moacyr A. H. B. da Silva


In this paper we discuss some affine properties of convex equal-area polygons, which are convex polygons such that all triangles formed by three consecutive vertices have the same area. Besides being able to approximate closed convex smooth curves almost uniformly with respect to affine length, convex equal-area polygons admit natural definitions of the usual affine differential geometry concepts, like affine normal and affine curvature. These definitions lead to discrete analogous to the six-vertex theorem and an affine isoperimetric inequality. One can also define discrete counterparts of the affine evolute, parallels and the affine distance symmetry set preserving many of the properties valid for smooth curves.


Equal-area polygons Discrete six-vertex theorem Discrete isoperimetric inequality Discrete affine evolute Discrete affine distance symmetry set 



The first and second authors want to thank CNPq for financial support during the preparation of this manuscript.


  1. 1.
    Buchin, S.: Affine Differential Geometry. Science Press, New York (1983) MATHGoogle Scholar
  2. 2.
    Fischer, J.C., Jamison, R.E.: Properties of affinely regular polygons. Geom. Dedic. 69, 241–259 (1998) CrossRefGoogle Scholar
  3. 3.
    Flanders, H.: A proof of Mankowski’s inequality for convex curves. Am. Math. Mon. 75, 581–593 (1968) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
  5. 5.
    Giblin, P.J., Sapiro, G.: Affine-invariant distances, envelopes and symmetry sets. Geom. Dedic. 71, 237–261 (1998) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Giblin, P.J.: Affinely invariant symmetry sets. In: Geometry and Topology of Caustics (Caustics 06). Banach Center Publications, vol. 82, pp. 71–84 (2008) CrossRefGoogle Scholar
  7. 7.
    Gronchi, P., Longinetti, M.: Affinely regular polygons as extremals of area functionals. Discrete Comput. Geom. 39, 272–297 (2008) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gruber, P.: Approximation of convex bodies. In: Convexity and Its Applications, vol. 131. Birkhäuser, Basel (1983) Google Scholar
  9. 9.
    Gruber, P.: Aspects of approximation of convex bodies. In: Handbook of Convex Geometry, pp. 319–346. North-Holland, Amsterdam (1993) Google Scholar
  10. 10.
    Harel, G., Rabin, J.M.: Polygons whose vertex triangles have equal area. Am. Math. Mon. 110, 606–619 (2003) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Ludwig, M.: Asymptotic approximation of convex curves. Arch. Math. 63, 377–384 (1994) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    McClure, D., Vitale, R.: Polygonal approximation of plane curves. J. Math. Anal. Appl. 51, 326–358 (1975) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Ovsienko, V., Tabachnikov, S.: Projective geometry of polygons and discrete 4-vertex and 6-vertex theorems. Enseign. Math. 47, 3–19 (2001) MathSciNetMATHGoogle Scholar
  14. 14.
    Sapiro, G., Tannenbaum, A.: On affine plane curve evolution. J. Funct. Anal. 119(1), 79–120 (1994) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. Encyclopedia of Mathematics, vol. 44. Cambridge University Press, Cambridge (1993) MATHCrossRefGoogle Scholar
  16. 16.
    Tabachnikov, S.: A four-vertex theorem for polygons. Am. Math. Mon. 107, 830–833 (2000) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Teixeira, R.C.: Personal home page. http://www.professores.uff.br/ralph

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Marcos Craizer
    • 1
  • Ralph C. Teixeira
    • 2
  • Moacyr A. H. B. da Silva
    • 3
  1. 1.Departamento de MatemáticaPUC-RioRio de JaneiroBrazil
  2. 2.Departamento de Matemática AplicadaUFFNiteróiBrazil
  3. 3.Centro de Matemática AplicadaFGVRio de JaneiroBrazil

Personalised recommendations