Discrete & Computational Geometry

, Volume 48, Issue 1, pp 39–52 | Cite as

Conflict-Free Coloring for Rectangle Ranges Using O(n.382) Colors

  • Deepak Ajwani
  • Khaled Elbassioni
  • Sathish Govindarajan
  • Saurabh Ray
Article

Abstract

Given a set of points P⊆ℝ2, a conflict-free coloring of P w.r.t. rectangle ranges is an assignment of colors to points of P, such that each nonempty axis-parallel rectangle T in the plane contains a point whose color is distinct from all other points in PT. This notion has been the subject of recent interest and is motivated by frequency assignment in wireless cellular networks: one naturally would like to minimize the number of frequencies (colors) assigned to base stations (points) such that within any range (for instance, rectangle), there is no interference. We show that any set of n points in ℝ2 can be conflict-free colored with \(O(n^{\beta^{*}+o(1)})\) colors in expected polynomial time, where \(\beta^{*}=\frac{3-\sqrt{5}}{2} < 0.382\).

Keywords

Frequency assignment in wireless networks Conflict-free coloring Axis-parallel rectangles Boundary sets Monotone sequences 

References

  1. 1.
    Ajwani, D., Elbassioni, K.M., Govindarajan, S., Ray, S.: Conflict-free coloring for rectangle ranges using o(n .382) colors. In: SPAA’07: Proceedings of the Nineteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 181–187 (2007) CrossRefGoogle Scholar
  2. 2.
    Alon, N., Krivelevich, M., Sudakov, B.: Coloring graphs with sparse neighborhoods. J. Comb. Theory, Ser. B 77, 73–82 (1999) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Alon, N., Smorodinsky, S.: Conflict-free colorings of shallow discs. In: SCG’06: Proceedings of the Twenty-Second Annual Symposium on Computational Geometry, pp. 41–43 (2006) CrossRefGoogle Scholar
  4. 4.
    Bar-Noy, A., Cheilaris, P., Smorodinsky, S.: Conflict-free coloring for intervals: from offline to online. In: SPAA’06: Proceedings of the Eighteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 128–137 (2006) CrossRefGoogle Scholar
  5. 5.
    Chen, K.: How to play a coloring game against a color-blind adversary. In: SCG’06: Proceedings of the Twenty-Second Annual Symposium on Computational Geometry, pp. 44–51 (2006) CrossRefGoogle Scholar
  6. 6.
    Chen, K., Kaplan, H., Sharir, M.: Online conflict-free coloring for halfplanes, congruent disks, and axis-parallel rectangles. ACM Trans. Algorithms 5(2), 16 (2009) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chen, X., Pach, J., Szegedy, M., Tardos, G.: Delaunay graphs of point sets in the plane with respect to axis-parallel rectangles. Random Struct. Algorithms 34(1), 11–23 (2009) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Elbassioni, K., Mustafa, N.H.: Conflict-free colorings of rectangles ranges. In: STACS’06: Proceedings of the Twenty-Third Annual Symposium on Theoretical Aspects of Computer Science, pp. 254–263 (2006) Google Scholar
  9. 9.
    Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks. SIAM J. Comput. 33, 94–136 (2003) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935) Google Scholar
  11. 11.
    Fiat, A., Levy, M., Matoušek, J., Mossel, E., Pach, J., Sharir, M., Smorodinsky, S., Wagner, U., Welzl, E.: Online conflict-free coloring for intervals. In: SODA’05: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 545–554 (2005) Google Scholar
  12. 12.
    Har-Peled, S., Smorodinsky, S.: Conflict-free coloring of points and simple regions in the plane. Discrete Comput. Geom. 34, 47–70 (2005) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Panconesi, A., Srinivasan, A.: Randomized distributed edge coloring via an extension of the Chernoff-Hoeffding bounds. SIAM J. Comput. 26(2), 350–368 (1997) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Pach, J., Tóth, G.: Conflict free colorings. In: Discrete & Computational Geometry, The Goodman-Pollack Festschrift. Springer, Heidelberg (2003) Google Scholar
  15. 15.
    Smorodinsky, S.: On the chromatic number of some geometric hypergraphs. In: SODA’06: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, pp. 316–323 (2006) CrossRefGoogle Scholar
  16. 16.
    Smorodinsky, S.: Conflict-Free Coloring and Its Applications. In: CoRR: abs/1005.5520 (2010) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Deepak Ajwani
    • 1
  • Khaled Elbassioni
    • 2
  • Sathish Govindarajan
    • 3
  • Saurabh Ray
    • 2
  1. 1.Centre for Unified ComputingUniversity College CorkCorkIreland
  2. 2.Max-Planck-Institut für InformatikSaarbrückenGermany
  3. 3.Computer Science DepartmentIndian Institute of ScienceBangaloreIndia

Personalised recommendations