Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Diettrich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, pp. 585–591. MIT Press, Cambridge (2002)
Google Scholar
Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman & Hall, London (1994)
MATH
Google Scholar
de Silva, V., Carlsson, G.: Topological estimation using witness complexes. In: Alexa, M., Rusinkiewicz, S. (eds.) Eurographics Symposium on Point-Based Graphics, ETH, Zürich (2004)
Google Scholar
Dixon, M., Jacobs, N., Pless, R.: Finding minimal parameterizations of cylindrical image manifolds. In: CVPRW’06: Proc. 2006 Conference on Computer Vision and Pattern Recognition Workshop, Washington, DC, USA, p. 192. IEEE Computer Society, Los Alamitos (2006)
Chapter
Google Scholar
Donoho, D.L., Grimes, C.: Hessian eigenmaps: new locally linear embedding techniques for high-dimensional data. Technical Report TR 2003-08, Department of Statistics, Stanford University (2003)
Edelsbrunner, H., Harer, J.: Persistent homology—a survey. In: Goodman, J.E., Pach, J., Pollack, R. (eds.) Surveys on Discrete and Computational Geometry: Twenty Years Later. Contemporary Mathematics, vol. 453, pp. 257–282. American Mathematical Society, Providence (2008)
Google Scholar
Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28, 511–533 (2002)
MATH
MathSciNet
Google Scholar
Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1), 61–75 (2008)
Article
MATH
MathSciNet
Google Scholar
Guibas, L.J., Oudot, S.Y.: Reconstruction using witness complexes. In: Proc. 18th ACM–SIAM Symposium on Discrete Algorithms, pp. 1076–1085 (2007)
Google Scholar
Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
MATH
Google Scholar
Lee, J.A., Verleysen, M.: Nonlinear dimensionality reduction of data manifolds with essential loops. Neurocomputing 67, 29–53 (2005)
Article
Google Scholar
Morozov, D.: Dionysus library for computing persistent homology. http://www.mrzv.org/software/dionysus/
Paige, C.C., Saunders, M.A.: LSQR: sparse equations and least squares. http://www.stanford.edu/group/SOL/software/lsqr.html
Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8(1), 43–71 (1982)
Article
MATH
MathSciNet
Google Scholar
Pless, R., Simon, I.: Embedding images in non-flat spaces. In: Conference on Imaging Science Systems and Technology, pp. 182–188 (2002)
Google Scholar
Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)
Article
Google Scholar
Sexton, H., Vejdemo-Johansson, M.: jPlex simplicial complex library. http://comptop.stanford.edu/programs/jplex/
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)
Article
Google Scholar
Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)
Article
MATH
MathSciNet
Google Scholar