Discrete & Computational Geometry

, Volume 44, Issue 2, pp 330–428 | Cite as

Conformal Mapping in Linear Time

  • Christopher J. Bishop


Given any ε>0 and any planar region Ω bounded by a simple n-gon P we construct a (1+ε)-quasiconformal map between Ω and the unit disk in time C(ε)n. One can take \(C(\epsilon)=C+C\log \frac{1}{\epsilon}\log \log \frac{1}{\epsilon}\).


Numerical conformal mappings Schwarz–Christoffel formula Hyperbolic 3-manifolds Sullivan’s theorem Convex hulls Quasiconformal mappings Quasisymmetric mappings Medial axis CRDT algorithm 


  1. 1.
    Aggarwal, A., Guibas, L.J., Saxe, J., Shor, P.W.: A linear-time algorithm for computing the Voronoĭ diagram of a convex polygon. Discrete Comput. Geom. 4(6), 591–604 (1989) MathSciNetGoogle Scholar
  2. 2.
    Ahlfors, L.V.: Lectures on Quasiconformal Mappings. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey (1987). With the assistance of Clifford J. Earle, Jr., reprint of the 1966 original Google Scholar
  3. 3.
    Aho, A.V., Steiglitz, K., Ullman, J.D.: Evaluating polynomials at fixed sets of points. SIAM J. Comput. 4(4), 533–539 (1975) MathSciNetGoogle Scholar
  4. 4.
    Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 23, 345–405 (1991) Google Scholar
  5. 5.
    Aurenhammer, F., Klein, R.: Voronoi Diagrams. In: Handbook of Computational Geometry, pp. 201–290. North-Holland, Amsterdam (2000) Google Scholar
  6. 6.
    Banchoff, T.F., Giblin, P.J.: Global theorems for symmetry sets of smooth curves and polygons in the plane. Proc. R. Soc. Edinb. A 106(3–4), 221–231 (1987) MathSciNetGoogle Scholar
  7. 7.
    Banjai, L., Trefethen, L.N.: A multipole method for Schwarz–Christoffel mapping of polygons with thousands of sides. SIAM J. Sci. Comput. 25(3), 1042–1065 (2003) (electronic) MathSciNetGoogle Scholar
  8. 8.
    Bern, M., Eppstein, D.: Mesh generation and optimal triangulation. In: Computing in Euclidean Geometry. Lecture Notes Ser. Comput, vol. 1, pp. 23–90. World Scientific, River Edge (1992) Google Scholar
  9. 9.
    Beurling, A., Ahlfors, L.: The boundary correspondence under quasiconformal mappings. Acta Math. 96, 125–142 (1956) MathSciNetGoogle Scholar
  10. 10.
    Binder, I., Braverman, M., Yampolsky, M.: On the computational complexity of the Riemann mapping. Ark. Mat. 45(2), 221–239 (2007) MathSciNetGoogle Scholar
  11. 11.
    Bishop, C.J.: Divergence groups have the Bowen property. Ann. Math. (2) 154(1), 205–217 (2001) MathSciNetGoogle Scholar
  12. 12.
    Bishop, C.J.: BiLipschitz approximations of quasiconformal maps. Ann. Acad. Sci. Fenn. Math. 27(1), 97–108 (2002) MathSciNetGoogle Scholar
  13. 13.
    Bishop, C.J.: Quasiconformal Lipschitz maps, Sullivan’s convex hull theorem and Brennan’s conjecture. Ark. Mat. 40(1), 1–26 (2002) MathSciNetGoogle Scholar
  14. 14.
    Bishop, C.J.: An explicit constant for Sullivan’s convex hull theorem. In: In the Tradition of Ahlfors and Bers, III. Contemp. Math., vol. 355, pp. 41–69. Am. Math. Soc., Providence (2004) Google Scholar
  15. 15.
    Bishop, C.J., Hakobyan, H.: A central set of dimension 2. Proc. Am. Math. Soc. 136(7), 2453–2461 (2008) MathSciNetGoogle Scholar
  16. 16.
    Bishop, C.J.: Bounds for the CRDT conformal mapping algorithm. Comput. Methods Funct. Theory 10(1), 325–366 (2010) MathSciNetGoogle Scholar
  17. 17.
    Bishop, C.J.: A fast QC-mapping theorem for polygons. Preprint (2009) Google Scholar
  18. 18.
    Bishop, E., Bridges, D.: Constructive Analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 279. Springer, Berlin (1985) Google Scholar
  19. 19.
    Blum, H.: A transformation for extracting new descriptors of shape. In: Dunn, W.W. (ed.) Proc. Sympos. Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967) Google Scholar
  20. 20.
    Blum, H.: Biological shape and visual science. J. Theoret. Biol. 38, 205–287 (1973) Google Scholar
  21. 21.
    Blum, H., Nagel, R.N.: Shape descriptors using weighted symmetric axis functions. Pattern Recogn. 10(3), 167–180 (1978) Google Scholar
  22. 22.
    Bridgeman, M.: Average bending of convex pleated planes in hyperbolic three-space. Invent. Math. 132(2), 381–391 (1998) MathSciNetGoogle Scholar
  23. 23.
    Bridgeman, M.: Average curvature of convex curves in H 2. Proc. Am. Math. Soc. 126(1), 221–224 (1998) MathSciNetGoogle Scholar
  24. 24.
    Bridgeman, M., Canary, R.D.: From the boundary of the convex core to the conformal boundary. Geom. Dedicata 96, 211–240 (2003) MathSciNetGoogle Scholar
  25. 25.
    Bruce, J.W., Giblin, P.J., Gibson, C.G.: Symmetry sets. Proc. R. Soc. Edinb. A 101(1–2), 163–186 (1985) MathSciNetGoogle Scholar
  26. 26.
    Canary, R.D.: The conformal boundary and the boundary of the convex core. Duke Math. J. 106(1), 193–207 (2001) MathSciNetGoogle Scholar
  27. 27.
    Carleson, L.: Interpolations by bounded analytic functions and the corona problem. Ann. Math. (2) 76, 547–559 (1962) MathSciNetGoogle Scholar
  28. 28.
    Chazai, F., Lieutier, A.: Stability and homotopy of a subset of the medial axis. In: Proc. 9th ACM Sympos. Solid Modeling Appl. (2004) Google Scholar
  29. 29.
    Chazal, F., Soufflet, R.: Stability and finiteness properties of medial axis and skeleton. J. Dynam. Control Syst. 10(2), 149–170 (2004) MathSciNetGoogle Scholar
  30. 30.
    Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6(5), 485–524 (1991) MathSciNetGoogle Scholar
  31. 31.
    Cheng, H.: A constructive Riemann mapping theorem. Pac. J. Math. 44, 435–454 (1973) Google Scholar
  32. 32.
    Chiang, C.-S., Hoffmann, C.M.: The medial axis transform for 2d regions. ACM Transactions on graphics (1982) Google Scholar
  33. 33.
    Chin, F., Snoeyink, J., Wang, C.A.: Finding the medial axis of a simple polygon in linear time. Discrete Comput. Geom. 21(3), 405–420 (1999) MathSciNetGoogle Scholar
  34. 34.
    Choi, H.I., Choi, S.W., Moon, H.P.: Mathematical theory of medial axis transform. Pac. J. Math. 181(1), 57–88 (1997) MathSciNetGoogle Scholar
  35. 35.
    Choi, S.W., Seidel, H.-P.: Hyperbolic Hausdorff distance for medial axis transformation. Graph. Models 63, 369–384 (2001) Google Scholar
  36. 36.
    Choi, S.W., Seidel, H.-P.: Linear one-sided stability of MAT for weakly injective domain. J. Math. Imaging Vis. 17(3), 237–247 (2002) MathSciNetGoogle Scholar
  37. 37.
    Choi, S.W., Lee, S.-W.: Stability analysis of medial axis transform. In Proc. 15th ICPR Barcelona, Spain, vol. 3, pp. 139–142 (2000) Google Scholar
  38. 38.
    Christoffle, E.B.: Sul problema della tempurature stazonaire e la rappresetazione di una data superficie. Ann. Mat. Pura Appl. Ser. II, pp. 89–103 (1867) Google Scholar
  39. 39.
    Cipra, B.: The best of the 20th century: Editors name top 10 algorithms. SIAM News 33(4), 1 (2000) Google Scholar
  40. 40.
    Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965) MathSciNetGoogle Scholar
  41. 41.
    Culver, T., Keyser, J., Manocha, D.: Accurate computation of the medial axis of a polyhedron. In: Proceedings of the Fifth ACM Symposium on Solid Modeling and Applications, June 8–11, 1999, Ann Arbor, MI, USA, pp. 179–190 (1999) Google Scholar
  42. 42.
    Daripa, P.: A fast algorithm to solve nonhomogeneous Cauchy–Riemann equations in the complex plane. SIAM J. Sci. Stat. Comput. 13(6), 1418–1432 (1992) MathSciNetGoogle Scholar
  43. 43.
    Daripa, P.: A fast algorithm to solve the Beltrami equation with applications to quasiconformal mappings. J. Comput. Phys. 106(2), 355–365 (1993) MathSciNetGoogle Scholar
  44. 44.
    Daripa, P., Mashat, D.: An efficient and novel numerical method for quasiconformal mappings of doubly connected domains. Numer. Algorithms 18(2), 159–175 (1998) MathSciNetGoogle Scholar
  45. 45.
    Davis, R.T.: Numerical methods for coordinate generation based on Schwarz–Christoffel transformations. In: 4th AIAA Comput. Fluid Dynamics Conf., Williamsburg, VA, pp. 1–15 (1979) Google Scholar
  46. 46.
    DeLillo, T.K.: The accuracy of numerical conformal mapping methods: a survey of examples and results. SIAM J. Numer. Anal. 31(3), 788–812 (1994) MathSciNetGoogle Scholar
  47. 47.
    Dirichlet, G.L.: Über die Reduktion der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. J. Reine Angew. Math. 40, 209–227 (1850) Google Scholar
  48. 48.
    Driscoll, T.A., Trefethen, L.N.: Schwarz–Christoffel Mapping. Cambridge Monographs on Applied and Computational Mathematics, vol. 8. Cambridge University Press, Cambridge (2002) Google Scholar
  49. 49.
    Driscoll, T.A., Vavasis, S.A.: Numerical conformal mapping using cross-ratios and Delaunay triangulation. SIAM J. Sci. Comput. 19(6), 1783–1803 (1998) (electronic), MathSciNetGoogle Scholar
  50. 50.
    Duan, H.B., Rees, E.: The existence of bitangent spheres. Proc. R. Soc. Edinb. A 111(1–2), 85–87 (1989) MathSciNetGoogle Scholar
  51. 51.
    Dutt, A., Gu, M., Rokhlin, V.: Fast algorithms for polynomial interpolation, integration, and differentiation. SIAM J. Numer. Anal. 33(5), 1689–1711 (1996) MathSciNetGoogle Scholar
  52. 52.
    Epstein, D.B.A., Marden, A.: Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces. In: Analytical and Geometric Aspects of Hyperbolic Space, Coventry/Durham, 1984. London Math. Soc. Lecture Note Ser., vol. 111, pp. 113–253. Cambridge Univ. Press, Cambridge (1987) Google Scholar
  53. 53.
    Epstein, D.B.A., Marden, A., Markovic, V.: Quasiconformal homeomorphisms and the convex hull boundary. Ann. Math. (2) 159(1), 305–336 (2004) MathSciNetGoogle Scholar
  54. 54.
    Epstein, D.B.A., Marden, A., Markovic, V.: Complex earthquakes and deformations of the unit disk. J. Differ. Geom. 73(1), 119–166 (2006) MathSciNetGoogle Scholar
  55. 55.
    Epstein, D.B.A., Marden, A., Markovic, V.: Convex regions in the plane and their domes. Proc. Lond. Math. Soc. (3) 92(3), 624–654 (2006) MathSciNetGoogle Scholar
  56. 56.
    Epstein, D.B.A., Markovic, V.: The logarithmic spiral: a counterexample to the K=2 conjecture. Ann. Math. (2) 161(2), 925–957 (2005) MathSciNetGoogle Scholar
  57. 57.
    Erdős, P.: On the Hausdorff dimension of some sets in Euclidean space. Bull. Am. Math. Soc. 52, 107–109 (1946) Google Scholar
  58. 58.
    Evans, G., Middleditch, A., Miles, N.: Stable computation of the 2D medial axis transform. Int. J. Comput. Geom. Appl. 8(5–6), 577–598 (1998) MathSciNetGoogle Scholar
  59. 59.
    Evans, W.D., Harris, D.J.: Sobolev embeddings for generalized ridged domains. Proc. Lond. Math. Soc. (3) 54(1), 141–175 (1987) MathSciNetGoogle Scholar
  60. 60.
    Fortune, S.: Voronoĭ diagrams and Delaunay triangulations. In: Computing in Euclidean Geometry. Lecture Notes Ser. Comput, vol. 1, pp. 193–233. World Scientific, River Edge (1992) Google Scholar
  61. 61.
    Fortune, S.: Voronoi diagrams and Delaunay triangulations. In: Handbook of Discrete and Computational Geometry. CRC Press Ser. Discrete Math. Appl., pp. 377–388. CRC, Boca Raton (1997) Google Scholar
  62. 62.
    Fremlin, D.H.: Skeletons and central sets. Proc. Lond. Math. Soc. (3) 74(3), 701–720 (1997) MathSciNetGoogle Scholar
  63. 63.
    Gaier, D.: Konstruktive Methoden der konformen Abbildung. Springer Tracts in Natural Philosophy, vol. 3. Springer, Berlin (1964) Google Scholar
  64. 64.
    Garnett, J.B.: Bounded Analytic Functions. Pure and Applied Mathematics, vol. 96. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1981) Google Scholar
  65. 65.
    Gaudeau, C., Boiron, M., Thouvenot, J.: Squelettisation et anamorphose dans l’étude de la dynamique des déformations des structures: application à l’analyse de la motricité gastrique. In: Recognition of Shapes and Artificial Intelligence (Second AFCET-IRIA Cong., Toulouse, 1979), vol. III, pp. 57–63. IRIA, Rocquencourt (1979) (in French) Google Scholar
  66. 66.
    Gehring, F.W.: The definitions and exceptional sets for quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I 281, 28 (1960) MathSciNetGoogle Scholar
  67. 67.
    Gehring, F.W.: Symmetrization of rings in space. Trans. Am. Math. Soc. 101, 499–519 (1961) MathSciNetGoogle Scholar
  68. 68.
    Giblin, P.: Symmetry sets and medial axes in two and three dimensions. In: The Mathematics of Surfaces, IX, Cambridge, 2000, pp. 306–321. Springer, London (2000) Google Scholar
  69. 69.
    Giblin, P.J., O’Shea, D.B.: The bitangent sphere problem. Am. Math. Mon. 97(1), 5–23 (1990) MathSciNetGoogle Scholar
  70. 70.
    Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987) MathSciNetGoogle Scholar
  71. 71.
    Gursoy, H.N., Patrikalakis, N.M.: Automated interrogation and adaptive subdivision of shape using medial axis transform. Adv. Eng. Softw. Workstations 13(5/6), 287–302 (1991) Google Scholar
  72. 72.
    He, Z.-X., Schramm, O.: On the convergence of circle packings to the Riemann map. Invent. Math. 125(2), 285–305 (1996) MathSciNetGoogle Scholar
  73. 73.
    He, Z.-X., Schramm, O.: The C -convergence of hexagonal disk packings to the Riemann map. Acta Math. 180(2), 219–245 (1998) MathSciNetGoogle Scholar
  74. 74.
    Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181(1), 1–61 (1998) MathSciNetGoogle Scholar
  75. 75.
    Henrici, P.: Applied and Computational Complex Analysis. Pure and Applied Mathematics, vol. 3. Wiley, New York (1986). Discrete Fourier analysis—Cauchy integrals—construction of conformal maps—univalent functions, A Wiley-Interscience Publication Google Scholar
  76. 76.
    Hertling, P.: An effective Riemann mapping theorem. Theoret. Comput. Sci. 219(1–2), 225–265 (1999). Computability and complexity in analysis (Castle Dagstuhl, 1997) MathSciNetGoogle Scholar
  77. 77.
    Hoffmann, C.M.: Computer vision, descriptive geometry and classical mechanics. In: Computer Graphics and Mathematics. Eurographics Series, pp. 229–244. Springer, Berlin (1992) Google Scholar
  78. 78.
    Hoffmann, C.M., Dutta, D.: On the skeleton of simple CSG objects. Trans. ASME 115, 87–94 (1993) Google Scholar
  79. 79.
    Holopainen, I.: Rough isometries and p-harmonic functions with finite Dirichlet integral. Rev. Mat. Iberoam. 10(1), 143–176 (1994) MathSciNetGoogle Scholar
  80. 80.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, 2nd edn. Springer, Berlin (1990). Distribution theory and Fourier analysis Google Scholar
  81. 81.
    Howell, L.H.: Numerical conformal mapping of circular arc polygons. J. Comput. Appl. Math. 46(1–2), 7–28 (1993) MathSciNetGoogle Scholar
  82. 82.
    Hu, C.: Algorithm 785: a software package for computing Schwarz–Christoffel conformal transformation for doubly connected polygonal regions. ACM Trans. Math. Softw. 24(3), 317–333 (1998) Google Scholar
  83. 83.
    Ivanov, V.I., Trubetskov, M.K.: Handbook of Conformal Mapping with Computer-Aided Visualization. CRC Press, Boca Raton (1995). With 1 IBM-PC floppy disk (5.25 inch; HD) Google Scholar
  84. 84.
    Jinkerson, R.A., Abrams, S.L., Bardis, L., Chryssostomidis, C., Clement, A., Patrikalakis, N.M., Wolter, F.E.: Inspection and feature extraction of marine propellers. J. Ship Product. 9(2), 88–106 (1993) Google Scholar
  85. 85.
    Karatsuba, A., Ofman, Yu.: Multiplication of many-digital numbers by automatic computers. Dokl. Akad. Nauk SSSR 145, 293–294 (1962) Google Scholar
  86. 86.
    Klein, R., Lingas, A.: A linear-time randomized algorithm for the bounded Voronoi diagram of a simple polygon. Int. J. Comput. Geom. Appl. 6(3), 263–278 (1996). ACM Symposium on Computational Geometry (San Diego, CA, 1993) MathSciNetGoogle Scholar
  87. 87.
    Kythe, P.K.: Computational Conformal Mapping. Birkhäuser, Boston (1998) Google Scholar
  88. 88.
    Lee, D.-T.: The medial axis transform of a planar shape. IEEE Trans. Pattern Anal. Mach. Intell. 4(4), 363–369 (1982) Google Scholar
  89. 89.
    Lee, D.T., Drysdale, R.L. III: Generalization of Voronoĭ diagrams in the plane. SIAM J. Comput. 10(1), 73–87 (1981) MathSciNetGoogle Scholar
  90. 90.
    Lee, Y.-H., Horng, S.-J.: The equivalence of the chessboard distance transform and the medial axis transform. Int. J. Comput. Math. 65(3–4), 165–177 (1997) MathSciNetGoogle Scholar
  91. 91.
    Maekawa, T., Patrikalakis, N.M.: Computation of singularities and intersections of offsets of planar curves. Comput. Aided Geom. Design 10(5), 407–429 (1993) MathSciNetGoogle Scholar
  92. 92.
    Maekawa, T., Patrikalakis, N.M.: Interrogation of differential geometry properties for design and manufacture. Vis. Comput. 10(4), 216–237 (1994) Google Scholar
  93. 93.
    Marshall, D.E., Rohde, S.: Convergence of a variant of the zipper algorithm for conformal mapping. SIAM J. Numer. Anal. 45(6), 2577–2609 (2007) (electronic) MathSciNetGoogle Scholar
  94. 94.
    Milman, D.: The central function of the boundary of a domain and its differentiable properties. J. Geom. 14(2), 182–202 (1980) MathSciNetGoogle Scholar
  95. 95.
    Milman, D., Waksman, Z.: On topological properties of the central set of a bounded domain in R m. J. Geom. 15(1), 1–7 (1981) MathSciNetGoogle Scholar
  96. 96.
    Mohar, B.: A polynomial time circle packing algorithm. Discrete Math. 117(1–3), 257–263 (1993) MathSciNetGoogle Scholar
  97. 97.
    Mohar, B.: Circle packings of maps in polynomial time. Eur. J. Combin. 18(7), 785–805 (1997) MathSciNetGoogle Scholar
  98. 98.
    Nehari, Z.: Conformal Mapping. Dover, New York (1975). Reprinting of the 1952 edition Google Scholar
  99. 99.
    O’Donnell, S.T., Rokhlin, V.: A fast algorithm for the numerical evaluation of conformal mappings. SIAM J. Sci. Stat. Comput. 10(3), 475–487 (1989) MathSciNetGoogle Scholar
  100. 100.
    O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University Press, Cambridge (1998) Google Scholar
  101. 101.
    Papamichael, N., Saff, E.B. (eds.): Computational complex analysis. J. Comput. Appl. Math. 46(1–2) (1993) Google Scholar
  102. 102.
    Patrikalakis, N.M., Maekawa, T.: Shape Interrogation for Computer Aided Design and Manufacturing. Springer, Berlin (2002) Google Scholar
  103. 103.
    Pottmann, H., Wallner, J.: Computational Line Geometry. Mathematics+Visualization. Springer, Berlin (2001) Google Scholar
  104. 104.
    Preparata, F.P.: The medial axis of a simple polygon. In: Mathematical Foundations of Computer Science, Proc. Sixth Sympos., Tatranská Lomnica, 1977. Lecture Notes in Comput. Sci., vol. 53, pp. 443–450. Springer, Berlin (1977) Google Scholar
  105. 105.
    Preparata, F.P., Shamos, M.I.: Computational Geometry. Texts and Monographs in Computer Science. Springer, New York (1985). An introduction Google Scholar
  106. 106.
    Rajan, V.T.: Optimality of the Delaunay triangulation in R d. Discrete Comput. Geom. 12(2), 189–202 (1994) MathSciNetGoogle Scholar
  107. 107.
    Reif, J.H.: Approximate complex polynomial evaluation in near constant work per point. SIAM J. Comput. 28(6), 2059–2089 (1999) (electronic) MathSciNetGoogle Scholar
  108. 108.
    Rodin, B., Sullivan, D.: The convergence of circle packings to the Riemann mapping. J. Differ. Geom. 26(2), 349–360 (1987) MathSciNetGoogle Scholar
  109. 109.
    Schwarz, H.A.: Conforme Abbildung der Oberfläche eines Tetraeders auf die Oberfläche einer Kugel. J. Reine Ange. Math., pp. 121–136, 1869. Also in collected works, Gesammelte Mathematische Abhandlungen, pp. 84–101. Springer, Berlin (1890) Google Scholar
  110. 110.
    Schwarz, H.A.: Gesammelte Mathematische Abhandlungen. Springer, Berlin (1890) Google Scholar
  111. 111.
    Shamos, M.I., Hoey, D.: Closest-point problems. In: 16th Annual Symposium on Foundations of Computer Science (Berkeley, CA, 1975), pp. 151–162. IEEE Computer Society, Long Beach (1975) Google Scholar
  112. 112.
    Sherbrooke, E.C., Patrikalakis, N.M., Brisson, E.: Computation of the medial axis transform of 3-d. In: Symposium on Solid Modeling and Applications, pp. 187–200 (1995) Google Scholar
  113. 113.
    Sherbrooke, E.C., Patrikalakis, N.M., Brisson, E.: An algorithm for the medial axis transform of 3d polyhedral solids. IEEE Trans. Vis. Comput. Graph. 2(1), 44–61 (1996) Google Scholar
  114. 114.
    Sherbrooke, E.C., Patrikalakis, N.M., Wolter, F.-E.: Differential and topological properties of medial axis transforms. CVGIP: Graph. Model Image Process. 58(6), 574–592 (1996) Google Scholar
  115. 115.
    Smith, W.D.: Accurate circle configurations and numerical conformal mapping in polynomial time. Unpublished technical memorandum, NEC Research Institute, Princeton, NJ (1991) Google Scholar
  116. 116.
    Stephenson, K.: Circlepack. Software available from
  117. 117.
    Stephenson, K.: The approximation of conformal structures via circle packing. In: Computational Methods and Function Theory 1997 (Nicosia). Ser. Approx. Decompos., vol. 11, pp. 551–582. World Scientific, River Edge (1999) Google Scholar
  118. 118.
    Stephenson, K.: Circle packing and discrete analytic function theory. In: Handbook of Complex Analysis: Geometric Function Theory, vol. 1, pp. 333–370. North-Holland, Amsterdam (2002) Google Scholar
  119. 119.
    Stephenson, K.: Circle packing: a mathematical tale. Not. Am. Math. Soc. 50(11), 1376–1388 (2003) MathSciNetGoogle Scholar
  120. 120.
    Strebel, K.: On the existence of extremal Teichmueller mappings. J. Anal. Math. 30, 464–480 (1976) MathSciNetGoogle Scholar
  121. 121.
    Sullivan, D.: Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension 3 fibrées sur S 1. In: Bourbaki Seminar, vol. 1979/80, pp. 196–214. Springer, Berlin (1981) Google Scholar
  122. 122.
    Tang, Z.: Fast Transformations Based on Structured Matrices with Applications to the Fast Multipole Method. PhD thesis, University of Maryland, College Park, Maryland (2004) Google Scholar
  123. 123.
    Thom, R.: Sur le cut-locus d’une variété plongée. J. Differ. Geom. 6, 577–586 (1972). Collection of articles dedicated to S.S. Chern and D.C. Spencer on their sixtieth birthdays MathSciNetGoogle Scholar
  124. 124.
    Thurston, W.P.: The Geometry and Topology of 3-Manifolds. The Geometry Center, University of Minnesota (1979) Google Scholar
  125. 125.
    Trefethen, L.N. (ed.): Numerical Conformal Mapping. North-Holland, Amsterdam (1986). Reprint of J. Comput. Appl. Math. 14(1–2) (1986) Google Scholar
  126. 126.
    Trefethen, L.N., Driscoll, T.A.: Schwarz–Christoffel mapping in the computer era. In: Proceedings of the International Congress of Mathematicians, vol. III, pp. 533–542 Berlin (1998) (electronic) Google Scholar
  127. 127.
    van der Hoeven, J.: Fast evaluation of holonomic functions. Theoret. Comput. Sci. 210(1), 199–215 (1999) MathSciNetGoogle Scholar
  128. 128.
    van der Hoeven, J.: Relax, but don’t be too lazy. J. Symb. Comput. 34(6), 479–542 (2002) Google Scholar
  129. 129.
    von Koppenfels, W., Stallmann, F.: Praxis der konformen Abbildung. Die Grundlehren der mathematischen Wissenschaften, vol. 100. Springer, Berlin (1959) Google Scholar
  130. 130.
    Voronoi, G.M.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. recherches sur les parallélloèdres primitifs. J. Reine Angew. Math. 134, 198–287 (1908) Google Scholar
  131. 131.
    Wang, J.: Medial axis and optimal locations for min-max sphere packing. J. Comput. Optim. 4(4), 487–503 (2000) Google Scholar
  132. 132.
    Wegmann, R.: Methods for numerical conformal mapping. In: Handbook of Complex Analysis: Geometric Function Theory, vol. 2, pp. 351–477. Elsevier, Amsterdam (2005) Google Scholar
  133. 133.
    Woess, W.: Random Walks on Infinite Graphs and Groups. Cambridge Tracts in Mathematics, vol. 138. Cambridge University Press, Cambridge (2000) Google Scholar
  134. 134.
    Wolter, E.-F.: Cut locus and the medial axis in global shape interrogation and representation. MIT, Dept. of Ocean Engineering, Design Laboratory Memorandum 92-2 (1993) Google Scholar
  135. 135.
    Wu, Q.J.: Sphere packing using morphological analysis. In: Discrete Mathematical Problems with Medical Applications, New Brunswick, NJ, 1999. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 55, pp. 45–54. Am. Math. Soc., Providence (2000) Google Scholar
  136. 136.
    Yao, C., Rokne, J.G.: A straightforward algorithm for computing the medial axis of a simple polygon. Int. J. Comput. Math 39, 51–60 (1991) Google Scholar
  137. 137.
    Yap, C.-K.: An O(n log n) algorithm for the Voronoĭ diagram of a set of simple curve segments. Discrete Comput. Geom. 2(4), 365–393 (1987) MathSciNetGoogle Scholar
  138. 138.
    Zhou, Q.: Computable real-valued functions on recursive open and closed subsets of Euclidean space. Math. Logic Q. 42(3), 379–409 (1996) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Mathematics DepartmentSUNY at Stony BrookStony BrookUSA

Personalised recommendations