Abstract
Let K=(K 1,…,K n ) be an n-tuple of convex compact subsets in the Euclidean space R n, and let V(⋅) be the Euclidean volume in R n. The Minkowski polynomial V K is defined as V K (λ 1,…,λ n )=V(λ 1 K 1+⋅⋅⋅+λ n K n ) and the mixed volume V(K 1,…,K n ) as
Our main result is a poly-time algorithm which approximates V(K 1,…,K n ) with multiplicative error e n and with better rates if the affine dimensions of most of the sets K i are small. Our approach is based on a particular approximation of log (V(K 1,…,K n )) by a solution of some convex minimization problem. We prove the mixed volume analogues of the Van der Waerden and Schrijver–Valiant conjectures on the permanent. These results, interesting on their own, allow us to justify the abovementioned approximation by a convex minimization, which is solved using the ellipsoid method and a randomized poly-time time algorithm for the approximation of the volume of a convex set.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Bárány, I., Füredi, Z.: Computing the volume is difficult. Discrete Comput. Geom. 2, 319–326 (1987)
Barvinok, A.I.: Computing mixed discriminants, mixed volumes, and permanents. Discrete Comput. Geom. 18, 205–237 (1997)
Bapat, R.B.: Mixed discriminants of positive semidefinite matrices. Linear Algebra Appl. 126, 107–124 (1989)
Belkin, M., Narayanan, H., Niyogi, P.: Heat flow and a faster algorithm to compute the surface area of a convex body. In: FOCS 2006 (2006)
Burago, Yu.D., Zalgaller, V.A.: Geometric Inequalities. Springer, Berlin (1988)
Dyer, M., Frieze, A.: The complexity of computing the volume of a polyhedron. SIAM J. Comput. 17, 967–994 (1988)
Dyer, M., Gritzmann, P., Hufnagel, A.: On the complexity of computing mixed volumes. SIAM J. Comput. 27(2), 356–400 (1998)
Egorychev, G.P.: The solution of van der Waerden’s problem for permanents. Adv. Math. 42, 299–305 (1981)
Emiris, I.Z., Canny, J.F.: Efficient incremental algorithms for sparse resultant and the mixed volume. J. Symb. Comput. 20, 117–149 (1995)
Falikman, D.I.: Proof of the van der Waerden’s conjecture on the permanent of a doubly stochastic matrix. Mat. Zametki 29(6), 931–938 (1981). (In Russian)
Gao, T., Li, T.Y., Wu, M.: MixedVol: A software package for Mixed Volume computation. ACM Trans. Math. Softw. 31(4), 555–560 (2005)
Gurvits, L., Samorodnitsky, A.: A deterministic polynomial-time algorithm for approximating mixed discriminant and mixed volume. In: Proc. 32 ACM Symp. on Theory of Computing, pp. 48–57, pp. 417–426. ACM, New York (2000)
Gurvits, L., Samorodnitsky, A.: A deterministic algorithm approximating the mixed discriminant and mixed volume, and a combinatorial corollary. Discrete Comput. Geom. 27, 531–550 (2002)
Gurvits, L.: Van der Waerden conjecture for mixed discriminants. Adv. Math. 200, 435–454 (2006)
Gurvits, L.: Hyperbolic polynomials approach to Van der Waerden/Schrijver–Valiant like conjectures: sharper bounds, simpler proofs and algorithmic applications. In: Proc. of STOC-2006 (2006)
Gurvits, L.: A proof of hyperbolic van der Waerden conjecture: the right generalization is the ultimate simplification. Electron. Colloq. Comput. Complex. (ECCC)(103) (2008). arXiv:math/0504397
Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math. Comput. 64, 1541–1555 (1995)
Linial, N., Samorodnitsky, A., Wigderson, A.: A deterministic strongly polynomial algorithm for matrix scaling and approximate permanents. Combinatorica 20(4), 545–568 (2000)
Lovász, L., Vempala, S.: Simulating annealing in convex bodies and an O *(n 4) volume algorithm. In: Proc. of FOCS-2003, Boston (2003)
Minc, H.: Permanents. Addison-Wesley, Reading (1978)
Nemirovsky, A.S., Yudin, D.B.: Problem Complexity and Method Efficiency in Optimization. Nauka, Moscow (1979). (In Russian); English translation: Wiley (1984)
Nemirovski, A., Rothblum, U.: On complexity of matrix scaling. Linear Algebra Appl. 302/303, 435–460 (1999)
Sturmfels, B.: Polynomial equations and convex polytopes. Am. Math. Mon. 105(10), 907–922 (1998)
Schrijver, A., Valiant, W.G.: On lower bounds for permanents. Indag. Math. 42, 425–427 (1980)
Schrijver, A.: Counting 1-factors in regular bipartite graphs. J. Comb. Theory, Ser. B 72, 122–135 (1998)
Shephard, G.C.: Inequalities between mixed volumes of convex sets. Mathematika 7, 125–138 (1960)
Voorhoeve, M.: A lower bound for the permanents of certain (0,1) matrices. Indag. Math. 41, 83–86 (1979)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gurvits, L. A Polynomial-Time Algorithm to Approximate the Mixed Volume within a Simply Exponential Factor. Discrete Comput Geom 41, 533–555 (2009). https://doi.org/10.1007/s00454-009-9147-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-009-9147-5