Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Discrete & Computational Geometry
  3. Article
Refolding Planar Polygons
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Efficient Folding Algorithms for Convex Polyhedra

22 July 2022

Tonan Kamata, Akira Kadoguchi, … Ryuhei Uehara

Automated Detection of Interesting Properties in Regular Polygons

25 June 2020

Zoltán Kovács

A Polygonal Approximation for General 4-Contours Corresponding to Weakly Simple Curves

09 January 2022

Mario Villafuerte & Petra Wiederhold

Crossing minimization in perturbed drawings

12 June 2020

Radoslav Fulek & Csaba D. Tóth

Which Convex Polyhedra Can Be Made by Gluing Regular Hexagons?

09 October 2019

Elena Arseneva & Stefan Langerman

Circumscribing Polygons and Polygonizations for Disjoint Line Segments

31 January 2022

Hugo A. Akitaya, Matias Korman, … Csaba D. Tóth

Removing Depth-Order Cycles Among Triangles: An Algorithm Generating Triangular Fragments

23 May 2019

Mark de Berg

Polyhedral Characterization of Reversible Hinged Dissections

11 May 2019

Jin Akiyama, Erik D. Demaine & Stefan Langerman

Regular Polygonal Partitions of a Tverberg Type

01 April 2021

Leah Leiner & Steven Simon

Download PDF
  • Open Access
  • Published: 26 February 2009

Refolding Planar Polygons

  • Hayley N. Iben1,2,
  • James F. O’Brien1 &
  • Erik D. Demaine3 

Discrete & Computational Geometry volume 41, pages 444–460 (2009)Cite this article

  • 470 Accesses

  • 10 Citations

  • 1 Altmetric

  • Metrics details

Abstract

This paper describes an algorithm for generating a guaranteed intersection-free interpolation sequence between any pair of compatible polygons. Our algorithm builds on prior results from linkage unfolding, and if desired it can ensure that every edge length changes monotonically over the course of the interpolation sequence. The computational machinery that ensures against self-intersection is independent from a distance metric that determines the overall character of the interpolation sequence. This decoupled approach provides a powerful control mechanism for determining how the interpolation should appear, while still assuring against intersection and guaranteeing termination of the algorithm. Our algorithm also allows additional control by accommodating a set of algebraic constraints that can be weakly enforced throughout the interpolation sequence.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Aichholzer, O., Demaine, E.D., Erickson, J., Hurtado, F., Overmars, M., Soss, M.A., Toussaint, G.T.: Reconfiguring convex polygons. Comput. Geom., Theory Appl. 20(1–2), 85–95 (2001)

    MATH  MathSciNet  Google Scholar 

  2. Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: Proceedings of ACM SIGGRAPH 2000, pp. 157–164 (July 2000)

  3. Atkinson, K.E.: An Introduction to Numerical Analysis, 2nd edn. Wiley, New York (1989)

    MATH  Google Scholar 

  4. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cantarella, J.H., Demaine, E.D., Iben, H.N., O’Brien, J.F.: An energy-driven approach to linkage unfolding. In: Proceedings of the 20th Annual Symposium on Computational Geometry, pp. 134–143 (June 2004)

  6. Carmel, E., Cohen-Or, D.: Warp-guided object-space morphing. Vis. Comput. 13, 465–478 (1997)

    Article  Google Scholar 

  7. Cohen-Or, D., Solomovic, A., Levin, D.: Three-dimensional distance field metamorphosis. ACM Trans. Graph. 17(2), 116–141 (1998)

    Article  Google Scholar 

  8. Connelly, R., Demaine, E.D., Rote, G.: Straightening polygonal arcs and convexifying polygonal cycles. Discrete Comput. Geom. 30(2), 205–239 (2003)

    MATH  MathSciNet  Google Scholar 

  9. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Englewood Cliffs (1996)

    MATH  Google Scholar 

  10. Efrat, A., Har-Peled, S., Guibas, L.J., Murali, T.M.: Morphing between polylines. In: Proceedings of the Twelfth ACM-SIAM Symposium on Discrete Algorithms, pp. 680–689 (2001)

  11. Goldstein, E., Gotsman, C.: Polygon morphing using a multiresolution representation. In: Proceedings of Graphics Interface, pp. 247–254 (1995)

  12. Gotsman, C., Surazhsky, V.: Guaranteed intersection-free polygon morphing. Comput. Graph. 25(1), 67–75 (2001)

    Article  Google Scholar 

  13. Guibas, L., Hershberger, J.: Morphing simple polygons. In: Proceedings of the 10th Annual Symposium on Computational Geometry, pp. 267–276 (1994)

  14. He, T., Wang, S., Kaufman, A.: Wavelet-based volume morphing. In Bergeron, D., Kaufman, A. (eds.) Proceedings of Visualization ’94, pp. 85–92 (1994)

  15. Hughes, J.F.: Scheduled Fourier volume morphing. In: Proceedings of ACM SIGGRAPH 1992, pp. 43–46 (1992)

  16. Kaul, A., Rossignac, J.: Solid-interpolating deformations: Construction and animation of PIPs. In: Proceedings of Eurographics ’91, pp. 493–505 (1991)

  17. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  18. Sederberg, T.W., Greenwood, E.: A physically based approach to 2-d shape blending. In: Proceedings of ACM SIGGRAPH 1992, pp. 25–34 (July 1992)

  19. Sederberg, T.W., Gao, P., Wang, G., Mu, H.: 2-d shape blending: an intrinsic solution to the vertex path problem. In: Proceedings of ACM SIGGRAPH 1993, pp. 15–18 (August 1993)

  20. Shapira, M., Rappoport, A.: Shape blending using the star-skeleton representation. IEEE Comput. Graph. Appl. 15, 44–50 (1995)

    Article  Google Scholar 

  21. Streinu, I.: A combinatorial approach to planar non-colliding robot arm motion planning. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, Redondo Beach, California, pp. 443–453 (November 2000)

  22. Surazhsky, V., Gotsman, C.: Controllable morphing of compatible planar triangulations. ACM Trans. Graph. 20(4), 203–231 (2001)

    Article  Google Scholar 

  23. Surazhsky, V., Gotsman, C.: Intrinsic morphing of compatible triangulations. Int. J. Shape Model. 9(2), 191–201 (2003)

    Article  MATH  Google Scholar 

  24. Turk, G., O’Brien, J.F.: Shape transformation using variational implicit functions. In: Proceedings of ACM SIGGRAPH 1999, pp. 335–342 (August 1999)

Download references

Author information

Authors and Affiliations

  1. University of California, Berkeley, Berkeley, CA, USA

    Hayley N. Iben & James F. O’Brien

  2. Pixar Animation Studios, Emeryville, CA, USA

    Hayley N. Iben

  3. Massachusetts Institute of Technology, Cambridge, MA, USA

    Erik D. Demaine

Authors
  1. Hayley N. Iben
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. James F. O’Brien
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Erik D. Demaine
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to James F. O’Brien.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Iben, H.N., O’Brien, J.F. & Demaine, E.D. Refolding Planar Polygons. Discrete Comput Geom 41, 444–460 (2009). https://doi.org/10.1007/s00454-009-9145-7

Download citation

  • Received: 27 September 2006

  • Revised: 17 November 2007

  • Accepted: 17 November 2007

  • Published: 26 February 2009

  • Issue Date: April 2009

  • DOI: https://doi.org/10.1007/s00454-009-9145-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Polygon interpolation
  • Morphing
  • Shape transformation
  • Refolding
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.