Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Discrete & Computational Geometry
  3. Article
On Kalai’s Conjectures Concerning Centrally Symmetric Polytopes
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

A Proof of Grünbaum’s Lower Bound Conjecture for general polytopes

01 October 2021

Lei Xue

Smooth Centrally Symmetric Polytopes in Dimension 3 are IDP

11 March 2019

Matthias Beck, Christian Haase, … Mateusz Michałek

Algebraic Degrees of 3-Dimensional Polytopes

06 May 2022

Mara Belotti, Michael Joswig & Marta Panizzut

Newton Polytopes of Nondegenerate Quadratic Forms

01 June 2022

A. Yu. Yuran

Isocanted Alcoved Polytopes

21 October 2020

María Jesús de la Puente & Pedro Luis Clavería

On the Symplectic Size of Convex Polytopes

04 March 2019

Pazit Haim-Kislev

Volumes of Generalized Chan–Robbins–Yuen Polytopes

20 February 2019

Sylvie Corteel, Jang Soo Kim & Karola Mészáros

On a Class of Polyhedra with Symmetrical Vertex Stars

01 May 2022

V. I. Subbotin

Counterexample to a Variant of a Conjecture of Ziegler Concerning a Simple Polytope and Its Dual

15 October 2020

William Gustafson

Download PDF
  • Published: 03 September 2008

On Kalai’s Conjectures Concerning Centrally Symmetric Polytopes

  • Raman Sanyal1,
  • Axel Werner1 &
  • Günter M. Ziegler1 

Discrete & Computational Geometry volume 41, pages 183–198 (2009)Cite this article

  • 386 Accesses

  • 14 Citations

  • 12 Altmetric

  • Metrics details

Abstract

In 1989, Kalai stated three conjectures A, B, C of increasing strength concerning face numbers of centrally symmetric convex polytopes. The weakest conjecture, A, became known as the “3d-conjecture.” It is well known that the three conjectures hold in dimensions d≤3. We show that in dimension 4 only conjectures A and B are valid, while conjecture C fails. Furthermore, we show that both conjectures B and C fail in all dimensions d≥5.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. A’Campo-Neuen, A.: On generalized h-vectors of rational polytopes with a symmetry of prime order. Discrete Comput. Geom. 22, 259–268 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. A’Campo-Neuen, A.: On toric h-vectors of centrally symmetric polytopes. Arch. Math. (Basel) 87, 217–226 (2006)

    MATH  MathSciNet  Google Scholar 

  3. Bárány, I., Lovász, L.: Borsuk’s theorem and the number of facets of centrally symmetric polytopes. Acta Math. Acad. Sci. Hung. 40, 323–329 (1982)

    Article  MATH  Google Scholar 

  4. Bayer, M.M.: The extended f-vectors of 4-polytopes. J. Comb. Theory Ser. A 44, 141–151 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bayer, M.M., Billera, L.J.: Generalized Dehn–Sommerville relations for polytopes, spheres and Eulerian partially ordered sets. Invent. Math. 79, 143–157 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Braden, T.: Remarks on the combinatorial intersection cohomology of fans. Pure Appl. Math. 2, 1149–1186 (2006)

    MATH  MathSciNet  Google Scholar 

  7. Coxeter, H.S.M.: Regular Polytopes, 3rd edn. Dover, New York (1973)

    Google Scholar 

  8. Gelfand, I.M., MacPherson, R.D.: Geometry in Grassmannians and a generalization of the dilogarithm. Adv. Math. 44, 279–312 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Mathematics: Theory & Applications. Birkhäuser, Boston (1994)

    MATH  Google Scholar 

  10. Grünbaum, B.: Convex Polytopes, 2nd edn. Graduate Texts in Mathematics, vol. 221. Springer, New York (2003). Second edition by V. Kaibel, V. Klee and G.M. Ziegler (original edition: Interscience, London 1967)

    Google Scholar 

  11. Hanner, O.: Intersections of translates of convex bodies. Math. Scand. 4, 67–89 (1956)

    MathSciNet  Google Scholar 

  12. Hansen, A.B.: On a certain class of polytopes associated with independence systems. Math. Scand. 41, 225–241 (1977)

    MathSciNet  Google Scholar 

  13. Kalai, G.: Rigidity and the lower bound theorem I. Invent. Math. 88, 125–151 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kalai, G.: The number of faces of centrally-symmetric polytopes. Graphs Comb. 5, 389–391 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuperberg, G.: From the Mahler conjecture to Gauss linking integrals. Preprint, Oct. 2006, 9 p., version 3, 10 p., July 2008, http://arxiv.org/abs/math/0610904v3

  16. McMullen, P.: Weights on polytopes. Discrete Comput. Geom. 15, 363–388 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Moon, J.W.: Some enumerative results on series-parallel networks. In: Random Graphs ’85, Poznań, 1985. North-Holland Math. Stud., vol. 144, pp. 199–226. North-Holland, Amsterdam (1987)

    Google Scholar 

  18. Novik, I.: The lower bound theorem for centrally symmetric simple polytopes. Mathematika 46, 231–240 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Paffenholz, A., Ziegler, G.M.: The E t -construction for lattices, spheres and polytopes. Discrete Comput. Geom. 32, 601–624 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Roth, B.: Rigid and flexible frameworks. Am. Math. Mon. 88, 6–21 (1981)

    Article  MATH  Google Scholar 

  21. Sanyal, R.: Constructions and obstructions for extremal polytopes. Ph.D. thesis, TU Berlin (2008)

  22. Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency. Vol. B. Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003). Matroids, trees, stable sets, Chaps. 39–69

    Google Scholar 

  23. Sloane, N.J.A.: Number of series-parallel networks with n unlabeled edges, multiple edges not allowed. Sequence A058387, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/A058387

  24. Stanley, R.: Generalized H-vectors, intersection cohomology of toric varieties, and related results. In: Commutative Algebra and Combinatorics, Kyoto, 1985. Adv. Stud. Pure Math., vol. 11, pp. 187–213. North-Holland, Amsterdam (1987)

    Google Scholar 

  25. Stanley, R.: On the number of faces of centrally-symmetric simplicial polytopes. Graphs Comb. 3, 55–66 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series, vol. 8. AMS, Providence (1996)

    MATH  Google Scholar 

  27. Tao, T.: Open question: the Mahler conjecture on convex bodies. Blog page started 8 March, 2007, http://terrytao.wordpress.com/2007/03/08/open-problem-the-mahler-conjecture-on-convex-bodies/

  28. Whiteley, W.: Infinitesimally rigid polyhedra. I. Statics of frameworks. Trans. Am. Math. Soc. 285, 431–465 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Mathematics, MA 6-2, TU Berlin, 10623, Berlin, Germany

    Raman Sanyal, Axel Werner & Günter M. Ziegler

Authors
  1. Raman Sanyal
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Axel Werner
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Günter M. Ziegler
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Günter M. Ziegler.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sanyal, R., Werner, A. & Ziegler, G.M. On Kalai’s Conjectures Concerning Centrally Symmetric Polytopes. Discrete Comput Geom 41, 183–198 (2009). https://doi.org/10.1007/s00454-008-9104-8

Download citation

  • Received: 14 September 2007

  • Revised: 01 August 2008

  • Accepted: 01 August 2008

  • Published: 03 September 2008

  • Issue Date: March 2009

  • DOI: https://doi.org/10.1007/s00454-008-9104-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Centrally symmetric convex polytopes
  • f-vector inequalities
  • Flag vectors
  • Kalai’s 3d-conjecture
  • Equivariant rigidity
  • Hanner polytopes
  • Hansen polytopes
  • Central hypersimplices
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.238.134.157

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.