Skip to main content
Log in

Farthest-Point Voronoi Diagrams in the Presence of Rectangular Obstacles

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We present an algorithm to compute the geodesic \(L_1\) farthest-point Voronoi diagram of m point sites in the presence of n rectangular obstacles in the plane. It takes \(O(nm+n \log n + m\log m)\) construction time using O(nm) space. This is the first optimal algorithm for constructing the farthest-point Voronoi diagram in the presence of obstacles. We can construct a data structure in the same construction time and space that answers a farthest-neighbor query in \(O(\log (n+m))\) time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aggarwal, A., Guibas, L.J., Saxe, J., Shor, P.W.: A linear-time algorithm for computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom. 4(6), 591–604 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alt, H., Cheong, O., Vigneron, A.: The Voronoi diagram of curved objects. Discrete Comput. Geom. 34(3), 439–453 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aronov, B.: On the geodesic Voronoi diagram of point sites in a simple polygon. Algorithmica 4(1), 109–140 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aronov, B., Fortune, S., Wilfong, G.: The furthest-site geodesic Voronoi diagram. Discrete Comput. Geom. 9(3), 217–255 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bae, S.W., Chwa, K.-Y.: The geodesic farthest-site Voronoi diagram in a polygonal domain with holes. In: Proceedings of the 25th annual symposium on computational geometry (SoCG), pp. 198–207 (2009)

  6. Ben-Moshe, B., Bhattacharya, B.K., Shi, Q.: Farthest neighbor Voronoi diagram in the presence of rectangular obstacles. In: Proceedings of the 13th Canadian conference on computational geometry (CCCG), pp. 243–246 (2005)

  7. Ben-Moshe, B., Katz, M.J., Mitchell, J.S.B.: Farthest neighbors and center points in the presence of rectangular obstacles. In: Proceedings of the 17th annual symposium on computational geometry (SoCG), pp. 164–171 (2001)

  8. Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard, S., Lee, M., Na, H.-S.: Farthest-polygon Voronoi diagrams. Comput. Geom. 44(4), 234–247 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chew, L.P., Dyrsdale, R.L.: III. Voronoi diagrams based on convex distance functions. In: Proceedings of the 1st annual symposium on Computational geometry (SoCG), pp. 235–244 (1985)

  10. Choi, J., Shin, C.-S., Kim, S.K.: Computing weighted rectilinear median and center set in the presence of obstacles. In: International symposium on algorithms and computation, pp. 30–40. Springer, Berlin (1998)

  11. Choi, J., Yap, C.: Monotonicity of rectilinear geodesics in \(d\)-space. In: Proceedings of the 12th annual symposium on computational geometry (SoCG), pp. 339–348 (1996)

  12. De Rezende, P.J., Lee, D.-T., Wu, Y.-F.: Rectilinear shortest paths with rectangular barriers. In: Proceedings of the 1st annual symposium on computational geometry (SoCG), pp. 204–213 (1985)

  13. Edelsbrunner, H., Guibas, L.J., Stolfi, J.: Optimal point location in a monotone subdivision. SIAM J. Comput. 15(2), 317–340 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Edelsbrunner, H., Seidel, R.: Voronoi diagrams and arrangements. Discrete Comput. Geom. 1(1), 25–44 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fortune, S.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2(1), 153–174 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the plane. SIAM J. Comput. 28(6), 2215–2256 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Klein, R.: Abstract Voronoi diagrams and their applications. In: Proceedings of the 4th international workshop on computational geometry (EuroCG), pp. 148–157. Springer, Berlin (1988)

  18. Lee, D.-T.: Two-dimensional Voronoi diagrams in the \(L_p\)Lp-metric. J. ACM 27(4), 604–618 (1980)

    Article  MATH  Google Scholar 

  19. Mitchell, J.S.B.: \(L_1\)L1 shortest paths among polygonal obstacles in the plane. Algorithmica 8(1–6), 55–88 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Oh, E.: Optimal algorithm for geodesic nearest-point Voronoi diagrams in simple polygons. In: Proceedings of the 30th annual ACM-SIAM symposium on discrete algorithms (SODA), pp. 391–409 (2019)

  21. Oh, E., Ahn, H.-K.: Voronoi diagrams for a moderate-sized point-set in a simple polygon. Discrete Comput. Geom. 63(2), 418–454 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Oh, E., Barba, L., Ahn, H.-K.: The geodesic farthest-point Voronoi diagram in a simple polygon. Algorithmica 82(5), 1434–1473 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Papadopoulou, E., Dey, S.K.: On the farthest line-segment Voronoi diagram. Int. J. Comput. Geom. Appl. 23(06), 443–459 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Papadopoulou, E., Lee, D.T.: The \(L_\infty \)L0 Voronoi diagram of segments and VLSI applications. Int. J. Comput. Geom. Appl. 11(05), 503–528 (2001)

    Article  MATH  Google Scholar 

  25. Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees. Commun. ACM 29(7), 669–679 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shamos, M.I., Hoey, D.: Closest-point problems. In: Proceedings of the 16th IEEE annual symposium on foundations of computer science (FOCS), pp. 151–162 (1975)

  27. Wang, H.: An optimal deterministic algorithm for geodesic farthest-point Voronoi diagrams in simple polygons. In: Proceedings of the 37th international symposium on computational geometry (SoCG), pp. 59:1–59:15 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Kap Ahn.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partly supported by the Institute of Information & communications Technology Planning & Evaluation(IITP) Grant funded by the Korea government(MSIT) (No. 2017-0-00905, Software Star Lab (Optimal Data Structure and Algorithmic Applications in Dynamic Geometric Environment)) and (No. 2019-0-01906, Artificial Intelligence Graduate School Program(POSTECH)).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Seo, C., Ahn, T. et al. Farthest-Point Voronoi Diagrams in the Presence of Rectangular Obstacles. Algorithmica 85, 2214–2237 (2023). https://doi.org/10.1007/s00453-022-01094-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-022-01094-9

Keywords

Navigation