Skip to main content
Log in

Algorithms for Counting Minimum-Perimeter Lattice Animals

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

A 2-dimensional lattice animal is a set of edge-connected cells on some lattice. In this paper, we address the problem of counting minimum-perimeter lattice animals, that is, animals that have the minimum possible perimeter of all animals of the same area. We provide two types of algorithms for counting minimum-perimeter animals on two lattices, namely, the square and hexagonal lattices, and analyze and compare the algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Altshuler, Y., Yanovsky, V., Vainsencher, D., Wagner, I., Bruckstein, A.: On minimal perimeter polyminoes. In Proceedings of the 13th International Conference on Discrete Geometry for Computer Imagery, pp. 17–28. Springer, Szeged, Hungary (2006)

  2. Asinowski, A., Barequet, G., Zheng, Y.: Enumerating polyominoes with fixed perimeter defect. In Proceedings of the 9th European Conference on Combinatorics, Graph Theory, and Applications. Electronic Notes in Discrete Mathematics, vol. 61, pp. 61–67. Elsevier, Vienna, Austria (2017)

  3. Barequet, G., Ben-Shachar, G.: Minimal-perimeter lattice animals and the constant-isomer conjecture. Electron. J. Combinat. (accepted)

  4. Barequet, G., Rote, G., Shalah, M.: \(\lambda > 4\): An improved lower bound on the growth constant of polyominoes. Comm. of the ACM 59(7), 88–95 (2016)

    Article  Google Scholar 

  5. Barequet, G., Shalah, M.: Improved upper bounds on the growth constants of polyominoes and polycubes. In Proceedings of the 14th Latin American Symposium on Theoretical Informatics, pp. 532–545. São Paulo, Brasil, Springer, postponed to (2021)

  6. Broadbent, S., Hammersley, J.: Percolation processes: I. Crystals and Mazes. In Mathematical Proceedings of the Cambridge Philosophical Society, vol. 53, pp. 629–641. Cambridge University Press, (1957)

  7. Dias, J.: Handbook of Polycyclic Dydrocarbons. Part A: Benzenoid Hydrocarbons. Elsevier Science Pub. Co., Inc., New York, NY (1987)

    Google Scholar 

  8. Dvoretzky, A., Motzkin, T.: A problem of arrangements. Duke Math. J. 14(2), 305–313 (1947)

    Article  MATH  Google Scholar 

  9. Fülep, G., Sieben, N.: Polyiamonds and polyhexes with minimum site-perimeter and achievement games. Electron. J. Combinat. 17(1), 65 (2010)

    Article  MATH  Google Scholar 

  10. Golomb, S.: Checker boards and polyominoes. Am. Math. Mon. 61(10), 675–682 (1954)

    Article  MATH  Google Scholar 

  11. Jensen, I.: Counting polyominoes: A parallel implementation for cluster computing. Proceedings of the International Conference on on Computational Science, part III, pages 203–212, Melbourne, Australia and St. Petersburg, Russia, June 2003. Lecture Notes in Computer Science, 2659. Springer Berlin Heidelberg (2003)

  12. Jensen, I., Guttmann, A.: Statistics of lattice animals (polyominoes) and polygons. J. of Physics A: Mathematical and General 33(29), L257 (2000)

    Article  MATH  Google Scholar 

  13. Klarner, D.: Cell growth problems. Canadian J. of Mathematics 19, 851–863 (1967)

    Article  MATH  Google Scholar 

  14. Madras, N.: A pattern theorem for lattice clusters. Ann. Comb. 3(2), 357–384 (1999)

    Article  MATH  Google Scholar 

  15. Motzkin, T.: Relations between hypersurface cross ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products. Bull. Am. Math. Soc. 54(4), 352–360 (1948)

    Article  MATH  Google Scholar 

  16. Pergola, E., Pinzani, R., Rinaldi, S., Sulanke, R.: A bijective approach to the area of generalized Motzkin paths. Adv. Appl. Math. 28(3–4), 580–591 (2002)

    Article  MATH  Google Scholar 

  17. Redelmeier, D.H.: Counting polyominoes: yet another attack. Discrete Math. 36(2), 191–203 (1981)

    Article  MATH  Google Scholar 

  18. Sieben, N.: Polyominoes with minimum site-perimeter and full set achievement games. European J. of Combinatorics 29(1), 108–117 (2008)

    Article  MATH  Google Scholar 

  19. Sulanke, R.A.: Moments of generalized Motzkin paths. J. Integer Seq. 3(00.1), 14 (2000)

  20. Sulanke, R.A.: Bijective recurrences for Motzkin paths. Adv. Appl. Math. 27(2–3), 627–640 (2001)

    Article  MATH  Google Scholar 

  21. Vainsencher, D., Bruckstein, A.: On isoperimetrically optimal polyforms. Theoretical Compututer Science 406(1–2), 146–159 (2008)

    Article  MATH  Google Scholar 

  22. Wang, D.-L., Wang, P.: Discrete isoperimetric problems. SIAM J. Appl. Math. 32(4), 860–870 (1977)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gill Barequet.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Work on this paper by both authors has been supported in part by Grant 575/15 from the Israel Science Foundation (ISF) and by Grant 2017684 from the Binational Science Foundation (BSF)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barequet, G., Ben-Shachar, G. Algorithms for Counting Minimum-Perimeter Lattice Animals. Algorithmica 85, 75–99 (2023). https://doi.org/10.1007/s00453-022-01008-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-022-01008-9

Keywords

Navigation