Skip to main content
Log in

(Sub)linear Kernels for Edge Modification Problems Toward Structured Graph Classes

  • Original Research
  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In a (parameterized) graph edge modification problem, we are given a graph G, an integer k and a (usually well-structured) class \(\mathcal {G}\) of graphs, and asked whether it is possible to transform G into a graph \(G' \in \mathcal {G}\) by adding and/or removing at most k edges. Parameterized graph edge modification problems received considerable attention in the last decades. In this paper, we focus on finding small kernels for edge modification problems. One of the most studied problems is the Cluster Editing problem, in which the goal is to partition the vertex set into a disjoint union of cliques. Even if a 2k-vertex kernel exists for Cluster Editing, this kernel does not reduce the size of the instance in most cases. Therefore, we explore the question of whether linear kernels are a theoretical limit in edge modification problems, in particular when the target graph class is very structured (such as a partition into cliques for instance). We prove, as far as we know, the first sublinear kernel for an edge modification problem. Namely, we show that Clique + Independent Set Deletion, which is a restriction of Cluster Deletion, admits a kernel of size \(O(k/\log k)\). We also obtain small kernels for several other edge modification problems. We first show that Cluster Deletion admits a 2k-vertex kernel as Cluster Editing, improving the previous 4k-vertex kernel. We prove that (Pseudo-)Split Completion (and the equivalent (Pseudo-)Split Deletion) admits a linear kernel, improving the existing quadratic kernel. We also prove that Trivially Perfect Completion admits a quadratic kernel (improving the cubic kernel), and finally prove that its triangle-free version (Starforest Deletion) admits a linear kernel, which is optimal under the Exponential Time Hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. See https://pacechallenge.org/2021/ for more information.

  2. Recall that \(O^*\) denotes the complexity up to polynomial factors.

References

  1. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1), 89–113 (2004)

    Article  MathSciNet  Google Scholar 

  2. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Comput. Biol. 6(3–4), 281–297 (1999)

    Article  Google Scholar 

  3. Bliznets, I., Cygan, M., Komosa, P., Mach, L., Pilipczuk, M.: Lower bounds for the parameterized complexity of minimum fill-in and other completion problems. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1132–1151. SIAM (2016)

  4. Böcker, S.: A golden ratio parameterized algorithm for cluster editing. J. Discrete Algorithms 16, 79–89 (2012)

    Article  MathSciNet  Google Scholar 

  5. Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification problems. Discrete Appl. Math. 154(13), 1824–1844 (2006)

    Article  MathSciNet  Google Scholar 

  6. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)

    Article  MathSciNet  Google Scholar 

  7. Cao, Y., Chen, J.: Cluster editing: kernelization based on edge cuts. Algorithmica 64(1), 152–169 (2012). https://doi.org/10.1007/s00453-011-9595-1

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, J., Meng, J.: A \(2k\) kernel for the cluster editing problem. J. Comput. Syst. Sci. 78(1), 211–220 (2012)

    Article  MathSciNet  Google Scholar 

  9. Crespelle, C., Drange, P., Fomin, F.V., Golovach, P.A.: A survey of parameterized algorithms and the complexity of edge modification. arXiv preprint, arXiv:2001.06867 (2020)

  10. Cygan, M., Fomin, F.V., Kowalik, Ł, Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms, vol. 5. Springer, Berlin (2015)

    Book  Google Scholar 

  11. Damaschke, P., Mogren, O.: Editing simple graphs. J. Graph Algorithms Appl. 18(4), 557–576 (2014). https://doi.org/10.7155/jgaa.00337

    Article  MathSciNet  MATH  Google Scholar 

  12. Drange, P.: Parameterized graph modification algorithms. Ph.D. thesis, University of Bergen (2015)

  13. Drange, P.G., Fomin, F.V., Pilipczuk, M., Villanger, Y.: Exploring the subexponential complexity of completion problems. ACM Trans. Comput. Theory (TOCT) 7(4), 1–38 (2015)

    Article  MathSciNet  Google Scholar 

  14. Drange, P., Pilipczuk, M.: A polynomial kernel for trivially perfect editing. Algorithmica 80(12), 3481–3524 (2018)

    Article  MathSciNet  Google Scholar 

  15. Drange, P., Reidl, F., Villaamil, F.S., Sikdar, S.: Fast biclustering by dual parameterization. arXiv preprint, arXiv:1507.08158 (2015)

  16. Dumas, M., Perez, A., Todinca, I.: A cubic vertex-kernel for trivially perfect editing. In: 46th International Symposium on Mathematical Foundations of Computer Science, MFCS 2021, 23–27 August 2021, Tallinn, Estonia, LIPIcs, vol. 202, pp. 45:1–45:14. Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.MFCS.2021.45

  17. Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Tight bounds for parameterized complexity of cluster editing with a small number of clusters. J. Comput. Syst. Sci. 80(7), 1430–1447 (2014)

    Article  MathSciNet  Google Scholar 

  18. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, Cambridge (2019)

    MATH  Google Scholar 

  19. Ghosh, E., Kolay, S., Kumar, M., Misra, P., Panolan, F., Rai, A., Ramanujan, M.S.: Faster parameterized algorithms for deletion to split graphs. Algorithmica 71(4), 989–1006 (2015)

    Article  MathSciNet  Google Scholar 

  20. Grüttemeier, N., Komusiewicz, C.: On the relation of strong triadic closure and cluster deletion. Algorithmica 82(4), 853–880 (2020). https://doi.org/10.1007/s00453-019-00617-1

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, J.: Problem kernels for NP-complete edge deletion problems: split and related graphs. In: International Symposium on Algorithms and Computation, pp. 915–926. Springer (2007)

  22. Hammer, P.L., Simeone, B.: The splittance of a graph. Combinatorica 1(3), 275–284 (1981)

    Article  MathSciNet  Google Scholar 

  23. Impagliazzo, R., Paturi, R.: On the complexity of \(k\)-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MathSciNet  Google Scholar 

  24. Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications. Discrete Appl. Math. 160(15), 2259–2270 (2012)

    Article  MathSciNet  Google Scholar 

  25. Konstantinidis, A.L., Nikolopoulos, S.D., Papadopoulos, C.: Strong triadic closure in cographs and graphs of low maximum degree. Theor. Comput. Sci. 740, 76–84 (2018). https://doi.org/10.1016/j.tcs.2018.05.012

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, Y., Wang, J., You, J., Chen, J., Cao, Y.: Edge deletion problems: branching facilitated by modular decomposition. Theor. Comput. Sci. 573, 63–70 (2015)

    Article  MathSciNet  Google Scholar 

  27. Mancini, F.: Graph modification problems related to graph classes. Ph.D. thesis, University of Bergen (2008)

  28. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Discrete Appl. Math. 113(1), 109–128 (2001)

    Article  MathSciNet  Google Scholar 

  29. van Bevern, R., Froese, V., Komusiewicz, C.: Parameterizing edge modification problems above lower bounds. Theory Comput. Syst. 62(3), 739–770 (2018)

    Article  MathSciNet  Google Scholar 

  30. Wolk, E.S.: The comparability graph of a tree. Proc. Am. Math. Soc. 13, 789–795 (1962). https://doi.org/10.1090/S0002-9939-1962-0172273-0

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhenyu, W., Leahy, R.: An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1101–1113 (1993)

    Article  Google Scholar 

  32. Yan, J.-H., Chen, J.-J., Chang, G.J.: Quasi-threshold graphs. Discrete Appl. Math. 69(3), 247–255 (1996). https://doi.org/10.1016/0166-218X(96)00094-7

    Article  MathSciNet  MATH  Google Scholar 

  33. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, pp. 253–264 (1978)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Théo Pierron.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by ANR Project GrR (ANR-18-CE40-0032), RGC Grants 15201317 and 15226116, and NSFC Grant 61972330.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bathie, G., Bousquet, N., Cao, Y. et al. (Sub)linear Kernels for Edge Modification Problems Toward Structured Graph Classes. Algorithmica 84, 3338–3364 (2022). https://doi.org/10.1007/s00453-022-00969-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-022-00969-1

Keywords

Navigation