Skip to main content
Log in

Reconstructing Phylogenetic Trees from Multipartite Quartet Systems

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

A phylogenetic tree is a graphical representation of an evolutionary history of taxa in which the leaves correspond to the taxa and the non-leaves correspond to speciations. One of important problems in phylogenetic analysis is to assemble a global phylogenetic tree from small phylogenetic trees, particularly, quartet trees. Quartet Compatibility is the problem of deciding whether there is a phylogenetic tree inducing a given collection of quartet trees, and to construct such a phylogenetic tree if it exists. It is known that Quartet Compatibility is NP-hard and that there are only a few results known for polynomial-time solvable subclasses. In this paper, we introduce two novel classes of quartet systems, called complete multipartite quartet system and full multipartite quartet system, and present polynomial-time algorithms for Quartet Compatibility for these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J. Comput. 10(3), 405–421 (1981)

    Article  MathSciNet  Google Scholar 

  2. Bandelt, H.-J., Dress, A.: Reconstructing the shape of a tree from observed dissimilarity data. Adv. Appl. Math. 7, 309–343 (1986)

    Article  MathSciNet  Google Scholar 

  3. Berry, V., Bryant, D., Jiang, T., Kearney, P., Li, M., Wareham, T., Zhang, H.: A practical algorithm for recovering the best supported edges of an evolutionary tree. In: Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms (SODA’00), pp. 287–296 (2000)

  4. Berry, V., Jiang, T., Kearney, P., Li, M., Wareham, T.: Quartet cleaning: Improved algorithms and simulations. In: Proceedings of the 7th European Symposium on Algorithm (ESA’99), Lecture Notes in Computer Science, vol. 1643, pp. 313–324. Springer, Heidelberg (1999)

  5. Bryant, D., Steel, M.: Extension operations on sets of leaf-labelled trees. Adv. Appl. Math. 16, 425–453 (1995)

    Article  MathSciNet  Google Scholar 

  6. Buneman, P.: The recovery of trees from measures of dissimilarity. In: Hodson, F.R., Kendall, D.G., Tautu, P. (eds.) Mathematics in the Archaeological and Historical Science, pp. 387–395. Edinburgh University Press, Edinburgh (1971)

    Google Scholar 

  7. Chang, M.-S., Lin, C.-C., Rossmanith, P.: New fixed-parameter algorithms for the minimum quartet inconsistency problem. Theory Comput. Syst. 47(2), 342–367 (2010)

    Article  MathSciNet  Google Scholar 

  8. Colonius, H., Schulze, H.H.: Tree structure from proximity data. Br. J. Math. Stat. Psychol. 34, 167–180 (1981)

    Article  Google Scholar 

  9. Dekker, M.C.H.: Reconstruction Methods for Derivation Trees. Master’s thesis, Vrije Universiteit (1986)

  10. Erdös, P.L., Steel, M.A., Székely, L.A., Warnow, T.J.: Local quartet splits of a binary tree infer all quartet splits via one dyadic inference rule. Comput. Artif. Intell. 16(2), 217–227 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Fitch, W.M.: A non-sequential method for constructing trees and hierarchical classifications. J. Mol. Evol. 18, 30–37 (1981)

    Article  Google Scholar 

  12. Gramm, J., Niedermeier, R.: A fixed-parameter algorithm for minimum quartet inconsistency. J. Comput. Syst. Sci. 67, 723–741 (2003)

    Article  MathSciNet  Google Scholar 

  13. Hirai, H., Iwamasa, Y., Murota, K., Živný, S.: A tractable class of binary VCSPs via M-convex intersection. ACM Trans. Algorithms 15(3), 44:1-44:41 (2019)

    Article  MathSciNet  Google Scholar 

  14. Jiang, T., Kearney, P., Li, M.: A polynomial time approximation scheme for inferring evolutionary trees from quartet topologies and its application. SIAM J. Comput. 30(6), 1942–1961 (2001)

    Article  MathSciNet  Google Scholar 

  15. Reaz, R., Bayzid, M.S., Rahman, M.S.: Accurate phylogenetic tree reconstruction from quartets: a heuristic approach. PLoS ONE 9(8), e104008 (2014)

    Article  Google Scholar 

  16. Sattath, S., Tversky, A.: Additive similarity trees. Psychometrika 42, 319–345 (1977)

    Article  Google Scholar 

  17. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  18. Semple, C., Steel, M.: A supertree method for rooted trees. Discrete Appl. Math. 105, 147–158 (2000)

    Article  MathSciNet  Google Scholar 

  19. Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  20. Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. J. Classif. 9, 91–116 (1992)

    Article  MathSciNet  Google Scholar 

  21. Strimmer, K., Haeseler, A.: Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. J. Mol. Biol. Evol. 13, 964–969 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Kunihiko Sadakane for bibliographical information. The first author is supported by JSPS KAKENHI Grant Numbers JP26280004, JP17K00029. The second author is supported by JSPS KAKENHI Grant Numbers JP16J04545, JP17K00029, JP19J01302, 20K23323, 20H05795, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuni Iwamasa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper has appeared in the proceedings of the 29th International Symposium on Algorithms and Computation (ISAAC 2018).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirai, H., Iwamasa, Y. Reconstructing Phylogenetic Trees from Multipartite Quartet Systems. Algorithmica 84, 1875–1896 (2022). https://doi.org/10.1007/s00453-022-00945-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-022-00945-9

Keywords

Navigation