Skip to main content
Log in

Relaxing the Irrevocability Requirement for Online Graph Algorithms

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Online graph problems are considered in models where the irrevocability requirement is relaxed. We consider the Late Accept model, where a request can be accepted at a later point, but any acceptance is irrevocable. Similarly, we consider a Late Reject model, where an accepted request can later be rejected, but any rejection is irrevocable (this is sometimes called preemption). Finally, we consider the Late Accept/Reject model, where late accepts and rejects are both allowed, but any late reject is irrevocable. We consider four classical graph problems: For Maximum Independent Set, the Late Accept/Reject model is necessary to obtain a constant competitive ratio, for Minimum Vertex Cover the Late Accept model is sufficient, and for Minimum Spanning Forest the Late Reject model is sufficient. The Maximum Matching problem admits constant competitive ratios in all cases. We also consider Maximum Acyclic Subgraph and Maximum Planar Subgraph, which exhibit patterns similar to Maximum Independent Set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Angelopoulos, S., Dürr, C., Jin, S.: Online maximum matching with recourse. In: 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS), Leibniz International Proceedings in Informatics (LIPIcs), vol. 117, pp. 8:1–8:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH (2018)

  2. Bartal, Y., Fiat, A., Leonardi, S.: Lower bounds for on-line graph problems with application to on-line circuit and optical routing. In: 28th Annual ACM Symposium on Theory of Computing (STOC), pp. 531–540. ACM (1996)

  3. Boyar, J., Eidenbenz, S.J., Favrholdt, L.M., Kotrbčík, M., Larsen., K.S.: Online dominating set. Algorithmica 81(5), 1938–1964 (2019)

  4. Boyar, J., Favrholdt, L.M., Kotrbčík, M., Larsen., K.S.: Relaxing the irrevocability requirement for online graph algorithms. In: 15th International Algorithms and Data Structures Symposium (WADS), Lecture Notes in Computer Science, vol. 10389, pp. 217–228. Springer (2017)

  5. Boyar, J., Larsen, K.S., Maiti, A.: The frequent items problem in online streaming under various performance measures. Int. J. Found. Comput. Sci. 26(4), 413–439 (2015)

    Article  MathSciNet  Google Scholar 

  6. Buchbinder, N., Feldman, M., Schwartz, R.: Online submodular maximization with preemption. In: 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1202–1216. SIAM (2015)

  7. Cygan, M., Jeż, Ł, Sgall, J.: Online knapsack revisited. Theory Comput. Syst. 58(1), 153–190 (2016)

    Article  MathSciNet  Google Scholar 

  8. Demange, M., Paschos, V.T.: On-line vertex-covering. Theoret. Comput. Sci. 332, 83–108 (2005)

    Article  MathSciNet  Google Scholar 

  9. Epstein, L., Levin, A., Mestre, J., Segev, D.: Improved approximation guarantees for weighted matching in the semi-streaming model. SIAM J. Discret. Math. 25(3), 1251–1265 (2011)

    Article  MathSciNet  Google Scholar 

  10. Epstein, L., Levin, A., Segev, D., Weimann, O.: Improved bounds for online preemptive matching. In: 30th International Symposium on Theoretical Aspects of Computer Science (STACS), Leibniz International Proceedings in Informatics (LIPIcs), vol. 20, pp. 389–399. Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH (2013)

  11. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-streaming model. Theoret. Comput. Sci. 348(2–3), 207–216 (2005)

    Article  MathSciNet  Google Scholar 

  12. Garay, J.A., Gopal, I.S., Kutten, S., Mansour, Y., Yung, M.: Efficient on-line call control algorithms. J. Algorithms 23(1), 180–194 (1997)

    Article  MathSciNet  Google Scholar 

  13. Gu, A., Gupta, A., Kumar, A.: The power of deferral: Maintaining a constant-competitive Steiner tree online. SIAM J. Comput. 45(1), 1–28 (2016)

    Article  MathSciNet  Google Scholar 

  14. Gupta, A., Kumar, A.: Online Steiner tree with deletions. In: 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 455–467. SIAM (2014)

  15. Han, X., Kawase, Y., Makino, K.: Randomized algorithms for online knapsack problems. Theoret. Comput. Sci. 562, 395–405 (2015)

    Article  MathSciNet  Google Scholar 

  16. Han, X., Kawase, Y., Makino, K., Guo, H.: Online removable knapsack problem under convex function. Theoret. Comput. Sci. 540, 62–69 (2014)

    Article  MathSciNet  Google Scholar 

  17. Han, X., Makino, K.: Online minimization knapsack problem. Theoret. Comput. Sci. 609, 185–196 (2016)

    Article  MathSciNet  Google Scholar 

  18. Imase, M., Waxman, B.M.: Dynamic Steiner tree problem. SIAM J. Discret. Math. 4(3), 369–384 (1991)

    Article  MathSciNet  Google Scholar 

  19. Iwama, K., Taketomi, S.: Removable online knapsack problems. In: 29th International Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in Computer Science, vol. 2380, pp. 293–305. Springer (2002)

  20. Jaillet, P., Lu, X.: Online traveling salesman problems with rejection options. Networks 64, 84–95 (2014)

    Article  MathSciNet  Google Scholar 

  21. Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley, NJ (1995)

    MATH  Google Scholar 

  22. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy caching. Algorithmica 3, 79–119 (1988)

    Article  MathSciNet  Google Scholar 

  23. Kocic, V.L., Ladas, G.: Global behavior of nonlinear difference equations of higher order with applications. Mathematics and Its Applications, vol. 256. Springer (1993)

  24. Komm, D.: An Introduction to Online Computation: Determinism, Randomization. Springer, Advice (2016)

  25. Komm, D., Královič, R., Královič, R., Kudahl, C.: Advice complexity of the online induced subgraph problem. In: 41st International Symposium on Mathematical Foundations of Computer Science (MFCS), Leibniz International Proceedings in Informatics (LIPIcs), vol. 58, pp. 59:1–59:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

  26. Korte, B., Hausmann, D.: An analysis of the greedy heuristic for independence systems. Ann. Discrete Math. 2, 65–74 (1978)

    Article  MathSciNet  Google Scholar 

  27. Kozen, D.C.: The Design and Analysis of Algorithms. Springer, Berlin (1992)

    Book  Google Scholar 

  28. Ladas, G., Philos, C.G., Sficas, Y.G.: Necessary and sufficient conditions for the oscillation of difference equations. Libertas Mathematica 9 (1989)

  29. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston (1976)

  30. Megow, N., Skutella, M., Verschae, J., Wiese, A.: The power of recourse for online MST and TSP. SIAM J. Comput. 45(3), 859–880 (2016)

    Article  MathSciNet  Google Scholar 

  31. Rawitz, D., Rosén, A.: Online budgeted maximum coverage. In: 24th Annual European Symposium on Algorithms (ESA), Leibniz International Proceedings in Informatics (LIPIcs), vol. 57, pp. 73:1–73:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH (2016)

  32. Rossmanith, P.: On the advice complexity of online edge- and node-deletion problems. In: Adventures Between Lower Bounds and Higher Altitudes. Lecture Notes in Computer Science, vol. 11011, pp. 449–462. Springer (2018)

  33. Saha, B., Getoor, L.: On maximum coverage in the streaming model & application to multi-topic blog-watch. In: SIAM International Conference on Data Mining, pp. 697–708. SIAM (2009)

  34. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2), 202–208 (1985)

    Article  MathSciNet  Google Scholar 

  35. Tarjan, R.E.: Data structures and network algorithms. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 44. SIAM (1983)

  36. Thomassen, C.: Kuratowski’s theorem. J. Gr. Theory 5(3), 225–241 (1981)

    Article  MathSciNet  Google Scholar 

  37. Vinkemeier, D.E.D., Hougardy, S.: A linear-time approximation algorithm for weighted matchings in graphs. ACM Trans. Algorithms 1(1), 107–122 (2005)

    Article  MathSciNet  Google Scholar 

  38. Whitney, H.: On the abstract properties of linear dependence. Am. J. Math. 57(3), 509–533 (1935)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim S. Larsen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the Danish Council for Independent Research, Natural Sciences, Grant DFF-1323-00247, the Independent Research Fund Denmark, Natural Sciences, Grants DFF-7014-00041 and DFF-0135-00018B, and the Villum Foundation, grant VKR023219. A preliminary version of the paper appeared in the 15th International Algorithms and Data Structures Symposium (WADS), volume 10389 of Lecture Notes in Computer Science, pages 217–228. Springer, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyar, J., Favrholdt, L.M., Kotrbčík, M. et al. Relaxing the Irrevocability Requirement for Online Graph Algorithms. Algorithmica 84, 1916–1951 (2022). https://doi.org/10.1007/s00453-022-00944-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-022-00944-w

Keywords

Navigation