Skip to main content
Log in

On the Approximability of the Single Allocation p-Hub Center Problem with Parameterized Triangle Inequality

  • Published:
Algorithmica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

For some \(\beta \ge 1/2\), a \(\varDelta _{\beta }\)-metric graph \(G=(V,E,w)\) is a complete edge-weighted graph such that \(w(v,v)=0\), \(w(u,v)=w(v,u)\), and \(w(u,v) \le \beta \cdot (w(u,x)+w(x,v))\) for all vertices \(u,v,x\in V\). A graph \(H=(V', E')\) is called a spanning subgraph of \(G=(V, E)\) if \(V'=V\) and \(E'\subseteq E\). Given a positive integer p, let H be a spanning subgraph of G satisfying the three conditions: (i) there exists a vertex subset \(C\subseteq V\) such that C forms a clique of size p in H; (ii) the set \(V \setminus C\) forms an independent set in H; and (iii) each vertex \(v\in V \setminus C\) is adjacent to exactly one vertex in C. The vertices in C are called hubs and the vertices in \(V\setminus C\) are called non-hubs. The \(\varDelta _{\beta }\text {-}p\) -Hub Center Problem (\(\varDelta _{\beta }\text {-}p\)HCP) is to find a spanning subgraph H of G satisfying all the three conditions such that the diameter of H is minimized. In this paper, we study \(\varDelta _{\beta } \text {-} p\)HCP for all \(\beta \ge \frac{1}{2}\). We show that for any \(\epsilon >0\), to approximate \(\varDelta _{\beta }\text {-}p\)HCP to a ratio \(g(\beta )-\epsilon \) is NP-hard and we give \(r(\beta )\)-approximation algorithms for the same problem where \(g(\beta )\) and \(r(\beta )\) are functions of \(\beta \). For \(\frac{3-\sqrt{3}}{2}<\beta \le \frac{5+\sqrt{5}}{10}\), we give an approximation algorithm that reaches the lower bound of approximation ratio \(g(\beta )\) where \(g(\beta )= \frac{3\beta -2\beta ^2}{3(1-\beta )}\) if \(\frac{3-\sqrt{3}}{2} < \beta \le \frac{2}{3}\) and \(g(\beta ) = \beta +\beta ^2\) if \(\frac{2}{3}\le \beta \le \frac{5+\sqrt{5}}{10}\). For \(\frac{5+\sqrt{5}}{10}\le \beta \le 1\), we show that \(g(\beta ) =\frac{4\beta ^2+3\beta -1}{5\beta -1}\) and \(r(\beta )= \min \{\beta +\beta ^2, \frac{4\beta ^2+5\beta +1}{5\beta +1}\}\). Additionally, for \(\beta \ge 1\), we show that \(g(\beta ) = \beta \cdot \frac{4\beta -1}{3\beta -1}\) and \(r(\beta )=\min \{\frac{\beta ^2+4\beta }{3},2\beta \}\). For \(\beta \ge 2\), the upper bound on the approximation ratio \(r(\beta ) =2\beta \) is linear in \(\beta \). For \(\frac{3-\sqrt{3}}{2}<\beta \le \frac{5+\sqrt{5}}{10}\), we give an approximation algorithm that reaches the lower bound of approximation ratio \(g(\beta )\) where \(g(\beta )= \frac{3\beta -2\beta ^2}{3(1-\beta )}\) if \(\frac{3-\sqrt{3}}{2} < \beta \le \frac{2}{3}\) and \(g(\beta ) = \beta +\beta ^2\) if \(\frac{2}{3}\le \beta \le \frac{5+\sqrt{5}}{10}\). For \(\beta \le \frac{3 - \sqrt{3}}{2}\), we show that \(g(\beta )=r(\beta )=1\), i.e., \(\varDelta _{\beta }\text {-} p\)HCP is polynomial-time solvable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alumur, S.A., Kara, B.Y.: Network hub location problems: the state of the art. Eur. J. Oper. Res. 190, 1–21 (2008)

    Article  MathSciNet  Google Scholar 

  2. Andreae, T.: On the traveling salesman problem restricted to inputs satisfying a relaxed triangle inequality. Networks 38, 59–67 (2001)

    Article  MathSciNet  Google Scholar 

  3. Andreae, T., Bandelt, H.-J.: Performance guarantees for approximation algorithms depending on parameterized triangle inequalities. SIAM J. Discret. Math. 8, 1–16 (1995)

    Article  Google Scholar 

  4. Bender, M.A., Chekuri, C.: Performance guarantees for the TSP with a parameterized triangle inequality. Inf. Process. Lett. 73, 17–21 (2000)

    Article  MathSciNet  Google Scholar 

  5. Böckenhauer, H.-J., Bongartz, D., Hromkovič, J., Klasing, R., Proietti, G., Seibert, S., Unger, W.: On the hardness of constructing minimal 2-connected spanning subgraphs in complete graphs with sharpened triangle inequality. In: Proceedings of the FSTTCS 2002, LNCS 2556, Springer 2002, pp. 59–70. Full version in Theoretical Computer Science 326 (2004), 137–153

  6. Böckenhauer, H.-J., Bongartz, D., Hromkovič, J., Klasing, R., Proietti, G., Seibert, S., Unger, W.: On \(k\)-edge-connectivity problems with sharpened triangle inequality. In: R. Petreschi, G. Persiano, R. Silvestri (eds.), Algorithms and Complexity, Proceedings of the 5th Italian Conference, CIAC 2003, LNCS 2653, Springer, pp. 189–200 (2003)

  7. Böckenhauer, H.-J., Bongartz, D., Hromkovič, J., Klasing, R., Proietti, G., Seibert, S., Unger, W.: On \(k\)-connectivity problems with sharpened triangle inequality. J. Dis. Algorithms 6(4), 605–617 (2008)

    Article  MathSciNet  Google Scholar 

  8. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Approximation algorithms for the TSP with sharpened triangle inequality. Inf. Process. Lett. 75, 133–138 (2000)

    Article  MathSciNet  Google Scholar 

  9. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Towards the notion of stability of approximation for hard optimization tasks and the traveling salesman problem (Extended Abstract). In: Proceedings of the CIAC 2000, LNCS 1767, Springer 2000, pp. 72–86. Full version in Theoretical Computer Science 285, pp. 3–24 (2002)

  10. Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., W. Unger: An improved lower bound on the approximability of metric TSP and approximation algorithms for the TSP with sharpened triangle inequality (Extended Abstract). In: Proceedings of STACS 2000, LNCS 1770, Springer, pp. 382-394 (2000)

  11. Böckenhauer, H.-J., Hromkovič, J., Seibert, S.: Stability of approximation. In T. F. Gonzalez (ed.): Handbook of Approximation Algorithms and Metaheuristics, Second Edition: Methodologies and Traditional Applications, Volume 1, CRC Press, Chapter 27 (2018)

  12. Böckenhauer, H.-J., Seibert, S.: Improved lower bounds on the approximability of the traveling salesman problem. RAIRO Theor. Inform. Appl. 34, 213–255 (2000)

    Article  MathSciNet  Google Scholar 

  13. Brimberg, J., Mladenović, N., Todosijević, R., Urošević, D.: General variable neighborhood search for the uncapacitated single allocation \(p\)-hub center problem. Optim. Lett. 11(2), 377–388 (2017)

    Article  MathSciNet  Google Scholar 

  14. Campbell, J.F.: Integer programming formulations of discrete hub location problems. Eur. J. Oper. Res. 72, 387–405 (1994)

    Article  Google Scholar 

  15. Campbell, J.F., Ernst, A.T.: Hub location problems. In: Drezner, Z., Hamacher, H.W. (eds.) Facility Location: Applications and Theory, pp. 373–407. Springer, Berlin (2002)

    Chapter  Google Scholar 

  16. Chen, L.-H., Cheng, D.-W., Hsieh, S.-Y., Hung, L.-J., Lee, C.-W., Wu, B.Y.: Approximation algorithms for single allocation \(k\)-hub center problem. In: Proceedings of the 33rd Workshop on Combinatorial Mathematics and Computation Theory (CMCT 2016), pp 13–18 (2016)

  17. Chen, L.-H., Hsieh, S.-Y., Hung, L.-J., Klasing, R., Lee, C.-W., Wu, B.Y.: On the complexity of the star \(p\)-hub center problem with parameterized triangle inequality. In: Proceedings of the 10th International Conference on Algorithms and Complexity (CIAC 2017), LNCS 10236, pp 152–163, 2017. Full version in Journal of Computer System Sciences 92, pp. 92–112 (2018)

  18. Chen, L.-H., Cheng, D.-W., Hsieh, S.-Y., Hung, L.-J., Lee, C.-W., Wu, B.Y.: Approximation algorithms for the star \(k\)-hub center problem in metric graphs. In: Proceedings of the 22nd International Computing and Combinatorics Conference (COCOON 2016), LNCS 9797, pp. 222–234 (2016)

  19. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. Proc. STOC 2014, 624–633 (2014)

  20. Ernst, A.T., Hamacher, H., Jiang, H., Krishnamoorthy, M., Woeginger, G.: Uncapacitated single and multiple allocation \(p\)-hub center problem. Comput. Oper. Res. 36, 2230–2241 (2009)

    Article  MathSciNet  Google Scholar 

  21. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, San Francisco (1979)

    MATH  Google Scholar 

  22. Hromkovič, J.: Stability of approximation algorithms and the knapsack problem. In: Karhumäki, J., Maurer, H., Paun, G., Rozenberg, G. (eds.) Jewels are Forever, pp. 238–249. Springer, New York (1999)

    Chapter  Google Scholar 

  23. Hromkovič, J.: Algorithmics for Hard Problems: Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  24. Kara, B.Y., Tansel, B.Ç.: On the single-assignment \(p\)-hub center problem. Eur. J. Oper. Res. 125, 648–655 (2000)

    Article  Google Scholar 

  25. Klasing, R., Mömke, T.: A modern view on stability of approximation. In: Adventures Between Lower Bounds and Higher Altitudes: Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th Birthday, LNCS 11011, pp 393–408 (2018)

  26. Liang, H.: The hardness and approximation of the star \(p\)-hub center problem. Oper. Res. Lett. 41, 138–141 (2013)

  27. Meyer, T., Ernst, A., Krishnamoorthy, M.: A 2-phase algorithm for solving the single allocation \(p\)-hub center problem. Comput. Oper. Res. 36, 3143–3151 (2009)

    Article  Google Scholar 

  28. Mömke, T.: An improved approximation algorithm for the traveling salesman problem with relaxed triangle inequality. Inf. Process. Lett. 115, 866–871 (2015)

    Article  MathSciNet  Google Scholar 

  29. Pamuk, F.S., Sepil, C.: A solution to the hub center problem via a single-relocation algorithm with tabu search. IIE Trans. 33, 399–411 (2001)

    Google Scholar 

  30. Rabbani, M., Kazemi, S.M.: Solving uncapacitated multiple allocation \(p\)-hub center problem by Dijkstras algorithm-based genetic algorithm and simulated annealing. Int. J. Ind. Eng. Comput. 6, 405–418 (2015)

    Google Scholar 

  31. Todosijević, R., Urošević, D., Mladenović, N., Hanafi, S.: A general variable neighborhood search for solving the uncapacitated \(r\)-allocation \(p\)-hub median problem. Optim. Lett. 11(6), 1109–1121 (2017)

    Article  MathSciNet  Google Scholar 

  32. Yaman, H., Elloumi, S.: Star \(p\)-hub center problem and star \(p\)-hub median problem with bounded path lengths. Comput. Oper. Res. 39, 2725–2732 (2012)

    Article  MathSciNet  Google Scholar 

  33. Yang, K., Liu, Y., Yang, G.: An improved hybrid particle swarm optimization algorithm for fuzzy \(p\)-hub center problem. Comput. Ind. Eng. 64, 133–142 (2013)

    Article  Google Scholar 

  34. Yang, K., Liu, Y., Yang, G.: Solving fuzzy \(p\)-hub center problem by genetic algorithm incorporating local search. Appl. Soft Comput. 13, 2624–2632 (2013)

    Article  Google Scholar 

  35. Yang, K., Liu, Y., Yang, G.: Optimizing fuzzy \(p\)-hub center problem with generalized value-at-risk criterion. Appl. Math. Model. 38, 3987–4005 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their constructive comments that greatly improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Ju Hung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper was published in Proceedings of the 23rd International Computing and Combinatorics Conference (COCOON 2017), Lecture Notes in Computer Science 10392, pp. 112–123, under the title, The approximability of the p-hub center problem with parameterized triangle inequality. Part of this research was supported by the Ministry of Science and Technology of Taiwan under grant MOST 108–2221–E–006–105–MY3. Part of this work was done while Ralf Klasing was visiting the Department of Computer Science and Information Engineering at National Cheng Kung University. This study has been carried out in the frame of the “Investments for the future” Programme IdEx Bordeaux - SysNum (ANR-10-IDEX-03-02). Research supported by the LaBRI under the “Projets émergents” program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, LH., Hsieh, SY., Hung, LJ. et al. On the Approximability of the Single Allocation p-Hub Center Problem with Parameterized Triangle Inequality. Algorithmica 84, 1993–2027 (2022). https://doi.org/10.1007/s00453-022-00941-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-022-00941-z

Keywords

Navigation