Skip to main content
Log in

A Refined Branching Algorithm for the Maximum Satisfiability Problem

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The Maximum satisfiability problem (MaxSAT) is a fundamental NP-hard problem which has significant applications in many areas. Based on refined observations, we derive a branching algorithm of running time \(O^{*}(1.2989^m)\) for the MaxSAT problem, where m denotes the number of clauses in the given CNF formula. Our algorithm considerably improves the previous best result \(O^*(1.3248^m)\) published in 2004. For our purpose, we derive improved branching strategies for variables of degrees 3, 4, and 5. The worst case of our branching algorithm is at certain degree-4 variables. To serve the branching rules, we also propose a variety of reduction rules which can be exhaustively applied in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As the MaxSAT problem is self-reducible [24, Chapter 9.1], its decision version is polynomial-time equivalent to its optimization version where the task is to find an assignment satisfying the maximum number of clauses.

  2. A kernelization algorithm for a problem with respect to a parameter is a polynomial-time algorithm which transforms every instance of the problem into an equivalent instance of the same problem such that the size of the new instance is bounded by a function of the parameter. See [5] for a comprehensive introduction.

References

  1. Bansal, N., Raman, V.: Upper bounds for MaxSAT: further improved. In: ISAAC, pp. 247–258 (1999)

  2. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of satisfiability. In: Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

  3. Bliznets, I., Golovnev, A.: A new algorithm for parameterized MAX-SAT. In: IPEC, pp. 37–48 (2012)

  4. Bliznets, I.A.: A new upper bound for \((n, 3)\)-MAX-SAT. J. Math. Sci. 188(1), 1–6 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bodlaender, H.L.: Kernelization: New upper and lower bound techniques. In: IWPEC, pp. 17–37 (2009)

  6. Cai, S., Luo, C., Su, K.: Scoring functions based on second level score for \(k\)-SAT with long clauses. J. Artif. Intell. Res. 51, 413–441 (2014)

    Article  MathSciNet  Google Scholar 

  7. Chen, J., Kanj, I.A.: Improved exact algorithms for Max-Sat. Discrete Appl. Math. 142(1–3), 17–27 (2004)

    Article  MathSciNet  Google Scholar 

  8. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40–42), 3736–3756 (2010)

    Article  MathSciNet  Google Scholar 

  9. Chen, J., Xu, C., Wang, J.: Dealing with \(4\)-variables by resolution: an improved MaxSAT algorithm. Theor. Comput. Sci. 670, 33–44 (2017)

    Article  MathSciNet  Google Scholar 

  10. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical Computer Science. An EATCS Series. Springer (2010)

  11. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  12. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)

    Article  MathSciNet  Google Scholar 

  13. Goemans, M.X., Williamson, D.P.: New 3/4-approximation algorithms for the maximum satisfiability problem. SIAM J. Discrete Math. 7(4), 656–666 (1994)

    Article  MathSciNet  Google Scholar 

  14. Gupta, S., Roy, S., Saurabh, S., Zehavi, M.: When rigging a tournament, let greediness blind you. In: IJCAI, pp. 275–281 (2018)

  15. Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H., Leyton-Brown, K.: The configurable SAT solver challenge (CSSC). Artif. Intell. 243, 1–25 (2017)

    Article  MathSciNet  Google Scholar 

  16. Impagliazzo, R., Paturi, R.: On the complexity of \(k\)-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MathSciNet  Google Scholar 

  17. Kleinberg, J.M., Tardos, É.: Algorithm design. Addison-Wesley (2006)

  18. Kulikov, A.S., Kutzkov, K.: New bounds for MAX-SAT by clause learning. In: CSR, pp. 194–204 (2007)

  19. Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. J. Artif. Intell. Res. 30, 321–359 (2007)

    Article  MathSciNet  Google Scholar 

  20. Luo, C., Cai, S., Su, K., Huang, W.: CCEHC: An efficient local search algorithm for weighted partial maximum satisfiability. Artif. Intell. 243, 26–44 (2017)

    Article  MathSciNet  Google Scholar 

  21. Majumdar, D., Raman, V., Saurabh, S.: Kernels for structural parameterizations of vertex cover: case of small degree modulators. In: IPEC, pp. 331–342 (2015)

  22. Marques-Silva, J.: The impact of branching heuristics in propositional satisfiability algorithms. In: P. Barahona, J.J. Alferes (eds.) Progress in Artificial Intelligence, pp. 62–74 (1999)

  23. Marques-Silva, J.: Practical applications of Boolean Satisfiability. In: WODES, pp. 74–80 (2008)

  24. Moore, C., Mertens, S.: The Nature of Computation. Oxford University Press (2011)

  25. Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478–534 (2013)

    Article  MathSciNet  Google Scholar 

  26. Niedermeier, R., Rossmanith, P.: New upper bounds for MaxSat. In: ICALP, pp. 575–584 (1999)

  27. Niedermeier, R., Rossmanith, P.: New upper bounds for maximum satisfiability. J. Algorithms 36(1), 63–88 (2000)

    Article  MathSciNet  Google Scholar 

  28. Poloczek, M., Schnitger, G., Williamson, D.P., van Zuylen, A.: Greedy algorithms for the maximum satisfiability problem: simple algorithms and inapproximability bounds. SIAM J. Comput. 46(3), 1029–1061 (2017)

    Article  MathSciNet  Google Scholar 

  29. Raman, V., Ravikumar, B., Rao, S.S.: A simplified NP-complete MAXSAT problem. Inform. Process. Lett. 65(1), 1–6 (1998)

    Article  MathSciNet  Google Scholar 

  30. Schaefer, T.J.: The complexity of satisfiability problems. In: STOC, pp. 216–226 (1978)

  31. Sohanghpurwala, A.A., Hassan, M.W., Athanas, P.: Hardware accelerated SAT solvers—a survey. J. Parallel Distrib. Comput. 106, 170–184 (2017)

    Article  Google Scholar 

  32. Sturtevant, N.R.: Last-branch and speculative pruning algorithms for Max\({}^{\text{n}}\). In: IJCAI, pp. 669–675 (2003)

  33. Trevisan, L.: Approximating satisfiable satisfiability problems. Algorithmica 28(1), 145–172 (2000)

    Article  MathSciNet  Google Scholar 

  34. Wang, Y., Cai, S., Chen, J., Yin, M.: A fast local search algorithm for minimum weight dominating set problem on massive graphs. In: IJCAI, pp. 1514–1522 (2018)

  35. Xu, C., Li, W., Yang, Y., Chen, J., Wang, J.: Resolution and domination: An improved exact MaxSAT algorithm. In: IJCAI, pp. 1191–1197 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China under Grants 61872048, 61672536, and 61702557, and the Research Foundation of Education Bureau of Hunan Province, China under Grant 21B0305. This work was done when the second author was affiliated with School of Computer Science and Engineering, Central South University, Changsha, China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Xu, C., Yang, Y. et al. A Refined Branching Algorithm for the Maximum Satisfiability Problem. Algorithmica 84, 982–1006 (2022). https://doi.org/10.1007/s00453-022-00938-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-022-00938-8

Keywords

Navigation